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Inspired by the chemotaxis interaction of living cells, we have developed an agent-based ap-
proach for self-organizing shape formation. Since all our simulations begin with a different
uniform random configuration and our agents move stochastically, it has been observed that
the self-organization process may form two or more stable final configurations. These differing
configurations may be characterized via statistical moments of the agents’ locations. In order
to direct the agents to robustly form one specific configuration, we generate biased initial
conditions whose statistical moments are related to moments of the desired configuration.
With this approach, we are able to successfully direct the aggregating swarms to produced
a desired macroscopic shape, starting from randomized initial conditions with controlled sta-
tistical properties.

Keywords: spatial self-organization, directed emergence, genetic programming, agent-based
system, statistical moments

1. Introduction

Motivated by the ability of cells to form into specific shapes and structures, in pre-
vious work we developed chemotaxis-inspired software agents for self-organizing
shape formation [1, 2]. The actions of the agents, which we call Morphogenetic
Primitives (MPs), are based on the behaviors exhibited by living cells. Cells emit
chemicals into the environment. Neighboring cells detect the overall chemical con-
centration at their surfaces and respond to the chemical stimulus by moving along
the chemical field’s gradients [3]. Similarly, in our system the agents emit a virtual
chemical, with its concentration defined by an explicit mathematical expression. A
set of agents start with an initial random configuration and stochastically follow
the gradient of the cumulative concentration field. These chemotaxis-based local
interactions direct the agents to self-organize into user-specified shapes (Figure 1).
Since the behaviors of MPs are based on local information and interactions, they
could provide a distributed, scalable approach for controlling the movements of a
robotic swarm.
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In some cases, we have observed though that the agents do not spatially self-
organize into a unique shape, but instead form two or more stable final configu-
rations. If MPs are used to control the motions of individual robots, it would be
extremely useful to direct the outcome of these bifurcating spatial self-organization
processes towards a consistent outcome. This would allow us to guarantee that all
of our MP aggregations produce a single, desired shape. This is a property that
is essential for robust and predictable swarm control algorithms, one that would
make the algorithm reliable for engineering applications. Towards this end, we have
analyzed whole swarm populations at a global level in search of macroscopic, distin-
guishing attributes. This analysis identified features, based on statistical moments
of the agents’ positions, that have significantly different values for different out-
comes of a swarm aggregation. In earlier work we discovered that these statistical
moments can be used to accurately predict the outcome of the self-organization
process at an early stage of the shape aggregation [4]. Given these differentiating
moments, the work described here investigated techniques for directing the out-
come of our self-organizing system via biased, random initial conditions in order
to consistently produce a desired final configuration.

Through our study of the dynamics of a swarm’s statistical moments during
the aggregation process we noted the connection between initial conditions and
the final shape configuration of the swarm. We discovered that biased, random
initial conditions that meet specified constraints, i.e. have well-defined statistical
properties, robustly yield simulations with a unique final outcome. For those agent
interactions that ultimately produce bifurcating/multiple shapes, we have identi-
fied for each shape, the most distinguishing macroscopic statistical moment of the
evolving swarm. It is possible to generate random distributions of MPs that have
specific statistical moments. Our work empirically shows that for bifurcating self-
organizing, non-linear, dynamical systems (e.g. a swarm of Morphogenetic Prim-
itives) one final outcome can be consistently generated by enforcing a constraint
on the value of a single moment when generating the swarm’s initial conditions.
Given this feature of our system, we are able to control the final outcome of the
simulation by simply thresholding the value of a statistical moment for a partic-
ular starting distribution, i.e., we constrain the random initial conditions to have
specific statistical properties.

2. Related Work

Research on distributed agent-based systems that can form spatial patterns and
shapes, as well as swarm behaviors, has been conducted for several decades.
Reynolds [5] proposed the seminal model for simulating flocking and schooling
behaviors based on the local interactions of “boids”. Fleischer and Barr [6, 7] ex-
plored a cell-based developmental model for self-organizing geometric structures.
Theraulaz and Bonabeau [8, 9] presented a modeling approach based on the swarm-
ing behavior of social insects. They combined swarm techniques with 3D cellular
automata to create autonomous agents that indirectly interact in order to create
complex 3D structures. Viscek et al. [10] investigated a particle-based model re-
lated to the Reynolds model and found that macroscopic phase changes occurred
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in the particle system when introducing noise in the local interactions. Jadbabaie
et al. [11] further explored the Vicsek model and provided a theoretical explana-
tion for the model’s observed behavior, as well as convergence results for classes of
switching signals and arbitrary initial heading vectors.

The initial work in this area of research created distributed, locally-interacting
agent-based systems, then observed and characterized their behaviors. Later work
explored techniques for directing these distributed, self-organizing systems. Eggen-
berger Hotz [12, 13] proposed the use of genetic regulatory networks coupled with
developmental processes for use in artificial evolution and was able to evolve simple
shapes. Bonabeau et al. [14] applied genetic algorithms to the stigmergic swarm-
based 3D construction method of Theraulaz and Bonabeau in order to evolve
interactions that produce user-acceptable structures. Nagpal et al. [15, 16] pre-
sented techniques to achieve programmable self-assembly. Cells are identically-
programmed units which are randomly distributed and communicate with each
other within a local area. In this approach, global-to-local compilation is used to
generate the program executed by each cell, which has specialized initial parame-
ters. Stoy and Nagpal [17] presented an approach to self-reconfiguration based on
directed growth, where the desired configuration (which is stored in each module)
is grown from an initial seed module. Spare modules move along recruitment gradi-
ents emanating from attached modules to create the final shape. Gradients derived
from global potential fields have also been investigated for directing robot swarms.
Both Rimon and Koditschek [18] and Hsieh and Kumar [19] demonstrated that
robot paths and controls can be computed from these fields, which lead the robots
to form a pre-defined shape.

Shen et al. [20] proposed a Digital Hormone Model for directing robot swarms to
perform such tasks as surrounding a target, covering an area and bypassing barri-
ers. The model relies on local communications between identical agents, but it also
has each agent move towards a single global target. Swarm chemistry, proposed by
Sayama [21, 22] and based on Reynolds’ model, is an approach for designing spatio-
temporal patterns for kinetically interacting, heterogeneous agents. An interactive
evolutionary method, similar to Sims’ [23], has been used to define system param-
eters that lead to agent segregation and structure formation. Mamei et al. [24]
proposed a distributed algorithm for robots that are attracted to and aggregate
around targets sensed over short distances. By electing leader(s) as barycenter(s),
propagating gradients of varying structure and using these gradients as instruction
conditionals, a swarm of simulated robots are able to self-organize into a number of
simple shapes such as a circle, ring, and lobes. Von Mammen and Christian [25] de-
scribed swarm grammars, an agent-based extension of Lindenmayer systems, that
are capable of adapting to their environment and evolve agent parameters in order
to create structures that incorporate aspects of developmental design and morpho-
genesis. The field of Guided Self-Organization (GSO) [26] has developed techniques
for steering self-organizing systems towards desired outcomes, while still attempt-
ing to not constrain the system’s configuration space during its evolution.

Doursat [27, 28] proposed a model for artificial development which combines
proliferation, differentiation, self-assembly, pattern formation and genetic regula-
tion. Via genetic-like regulation at the agent level, the agents can self-organize into
a number of patterned shapes and structures. Werfel et al. [29] proposed a de-
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centralized multi-agent system approach, inspired by mound-building termites, for
building user-defined structures. A user specifies a desired structure, and the sys-
tem automatically generates low-level rules for independent climbing robots that
guarantee production of the structure. A single “seed” brick is used as a land-
mark to identify where the structure is going to be built, and defines the origin
of a shared coordinate system for the robots. Gerling and Von Mammen [30] pro-
vided a context for this type of work in a summary of self-organized approaches to
construction.

Our previous and latest work on agent-based shape formation stands apart from
related work in that it utilizes a chemotaxis-based interaction paradigm inspired
by the behaviors of living cells which leads to the formation of tissues. Given
the goal of recreating the properties of cells, MPs were designed with principles
that should make them scalable and robust [2]. These design principles define
MPs as identical, distributed agents that are not directed by a ’master designer’,
exchange information locally, carry no representation of the shape to be formed,
and have no information about their global location. The macroscopic shape of
the swarm emerges from the aggregation of local interactions and behaviors. Our
approach is therefore novel compared to previous work in that it contains all of
the following features. 1) All morphogenetic primitives are randomly placed in the
environment, are identical, and perform the same simple actions, unlike Nagpal et
al. [15, 16]), Mamei et al. [24], and Doursat [27, 28]. They require no differentiated
behaviors or customized initialized states. 2) No initialization of spatial information
is needed in the computational environment, unlike Stoy and Nagpal [17], Shen et
al. [20], and Werfel et al. [29]. 3) Individual MPs do not know their location in any
external/global coordinate system, unlike Stoy and Nagpal [17], and [29]. 4) MPs do
not contain or utilize a representation of the predefined global shape that is being
composed, unlike Stoy and Nagpal [17], Rimon and Koditschek [18], and Hsieh and
Kumar [19]. 5) We utilize genetic programming to discover the MP concentration
field functions that lead to the formation of a user-specified shape. Chemotaxis
then provides a straightforward mechanism for determining the motion of MPs,
in contrast to the difficult-to-program approaches of Shen et al. [20] and Sayama
[21, 22]. Note that our new work described here enhances our previously developed
system [2] to make MPs more robust, consistent and reliable.

3. Background Material

3.1 Agent-based Shape Formation

Like Pfeifer et al. [31] we turn to biology and self-organization for insights into the
design of autonomous robots, robotic swarms in our case. Our previous work in
self-organizing shape formation [2, 32] is inspired by developmental biology [33] and
morphogenesis [34], and builds upon a chemotaxis-based cell aggregation simulation
system [35]. Morphogenesis is the process that forms the shape or structure of an
organism through cell shape change, movement, attachment, growth and death.
We have explored chemotaxis as a paradigm for agent system control because the
motions induced by chemotaxis (one of the mechanisms of morphogenesis) may
produce patterns, structures or sorting of cells [36].
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3.1.1 Morphogenetic Primitives

Morphogenetic Primitives are initially placed inside a 2D environment with a
random uniform distribution. Each MP is represented by a small disc and emits
a ‘chemical’ into the environment within a fixed distance relative to its own local
coordinate system. Every MP emits the identical local chemical field. An MP de-
tects the cumulative chemical field at eight receptors on its surface, and calculates
the field gradient from this input. MPs move in the direction of the field gradient
with a speed proportional to the magnitude of the gradient. By employing these
relatively simple chemotaxis-inspired behaviors MPs are able to self-organize into
user-specified macroscopic shapes.

This process is schematically presented in the bottom 2/3 of Figure 2. In the
middle left of the figure, a close-up of an MP is provided showing its eight chemical
sensors and the range of the finite chemical field that it emits. Numerous MPs are
randomly placed in the computational arena, and are provided as initial conditions
to a chemotaxis-based cell aggregation simulator. The simulator then computes
an aggregation simulation based on the one chemical field that is associated with
all MPs. The self-organization of the agent swarm is shown in the middle right of
the figure. The bottom flowchart of the figure outlines the steps taken by the cell
simulator for each cell. The bottom left image shows a representative MP chemical
field, with the chemical concentration visualized with gray-scale colors. Isolines are
added to highlight the structure of the chemical field. The image to its right shows
a cumulative chemical field given the contributions of all of the MPs in the arena.
The top part of the figure will be explained later in the paper.

3.1.2 Genetic Programming for Discovering Local Interactions

While MPs’ fundamental interactions are based on a chemotaxis-inspired
paradigm, we do not limit their behaviors/properties to be physically realistic or
completely consistent with biology. Instead, developmental biology provides a mo-
tivating starting point for MPs. As a way to customize chemotaxis-inspired agents
for shape formation, we alter the chemical concentration fields around individual
cells. Instead of the chemical concentration dropping off only as an inverse func-
tion of distance d from the cell’s surface (e.g. 1/d), in our system we define the
concentration field with an explicit function of d and θ, the angular location in the
cell’s local coordinate system.

Currently, there is no prescriptive way to specify a particular local field function
that will direct MPs to form a specific macroscopic shape, we therefore employ
genetic programming [37] to produce the mathematical expression that explicitly
specifies the field function. In order to meet the substantial computational re-
quirement imposed by our evolutionary computing approach, we have implemented
a master-slave form of the distributed genetic programming process [1]. The fit-
ness measure associated with each individual field function is based on the shape
that emerges from the chemical-field-driven aggregation simulation, and determines
which functions will be passed along to later generations. The genetic process stops
once an individual (i.e., a mathematical expression) in the population produces the
desired shape via a chemotaxis simulation, or after a certain number of generations
have been produced and evaluated. Figure 3 illustrates this approach. See [1], [2]
and [38] for more details on MPs and the software system that implements them.
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With this algorithm, we have successfully evolved local MP chemical field func-
tions for a number of simple shapes [2]. These results support the proposition
that biological phenomena offer paradigms for designing cellular primitives for
self-organizing shape formation. While the resulting explicit chemical fields are not
biologically/chemically plausible, they do provide an approach for controlling robot
swarms that communicate wirelessly over short distances and share minimal infor-
mation with each other. Thus the agents in the swarm do not require significant
compute power to self-organize. Additionally, evolutionary computing techniques,
specifically genetic programming, have been crucial for discovering the detailed
local interactions that lead to the emergence of the swarm’s macroscopic structure.

However, given the MPs’ initial random configurations and the stochastic nature
of the self-organization process, the outcomes of the simulations with a specific
field function are not always the same. We have found that the shape formation
simulations, which include random displacements of the MPs and noise in their
movements, can generate bifurcating results. For some field functions, if we run
numerous simulations each starting with a different random uniform distribution
of MPs, two sets of final configurations will be formed. In most cases an equal num-
ber of each configuration are produced, but in a few cases the ratio of the numbers
is not one. Since it would be useful to control the outcomes of the self-organization
process, we have developed methods for directing the final configuration of a bi-
furcating simulation by starting the simulation with biased initial conditions [39].

3.2 Outcome Prediction

The first step towards developing methods that direct the outcome of a swarm
simulation involved identifying spatial features that are correlated with and can
differentiate the final, different swarm configurations. Our initial effort towards
achieving this goal investigated methods for predicting the final configuration of
a bifurcating simulation at an early stage of the aggregation process. Our rea-
soning was that if certain spatial features can be used to predict the outcome of
an aggregation, then they represent unique attributes of the swarm that could be
manipulated to direct the swarm. In order to predict the final outcome of a self-
organizing shape formation simulation, we first extracted features that capture the
spatial distribution of the MPs. Moments provide a quantitative way to describe a
distribution. Since MPs are defined as small discs, we use the center of each disc
to represent each MP’s location. We therefore can simplify the collection of MP
locations as a set of 2D points, and apply moment analysis to this set over the
duration of the MP simulation.

We calculated the mean (first moment), variance (second central moment), skew-
ness (third central moment) and kurtosis (fourth central moment) from the x and y
coordinates of the MP centers. We analyzed the locations Xi of all points (MPs) as
a whole, rather than tracking the location and movement of each individual point.
The population size of the agents is denoted as n, (n = 500), and the formulas of
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the four moments M1 to M4 are given in Equations 1 to 4,

M1 =
1

n

n∑
i=1

Xi, (1)

M2 =
1

n

n∑
i=1

(Xi −M1)2, (2)

M3 = [
1

n

n∑
i=1

(Xi −M1)3]/(M2)3/2, (3)

M4 = [
1

n

n∑
i=1

(Xi −M1)4]/(M2)2. (4)

These statistical moments provide quantitative information about the shape of
histograms/distributions. When computed for the x and y coordinates of the MPs,
these moments capture the asymmetry and shape of the spatial distribution of the
whole population. We have not found it necessary to compute cross moments, with
the first four moments providing sufficient information for our analysis. Since the
x and y coordinates of the points change over time, so do the four moments of the
distribution of the x and y values. The change of the moments as a function of
simulation time also provides insight into the dynamic nature of a particular MP
simulation.

At each simulation time t, the four moments Mi(t) (i = 1 to 4) of the overall
distribution are calculated. We then approximate the time derivative of the mo-
ments as the slope of a linear interpolating function of consecutive moment values.
By calculating the moments and their time derivatives for both the x and y coor-
dinates of the point set, at a given time t, we obtain a 16-dimensional vector to
represent the distribution,

Mx1
(t),My1(t),Mx2

(t),My2(t),Mx3
(t),My3(t),Mx4

(t),My4(t), kx1
(t), ky1(t),

kx2
(t), ky2(t), kx3

(t), ky3(t), kx4
(t), ky4(t).

Given the sensitivity of non-linear dynamical systems to initial conditions [40],
it makes it extremely difficult, if not impossible, to predict the outcome of our
complex, self-organizing system from its initial, random spatial configuration. We
therefore attempted to predict the final spatial configuration at an early stage of the
aggregation, usually before it is visually evident what shape will emerge from the
process. We considered prediction of the bifurcating outcomes as a classification
problem and utilized support vector machines (SVMs) [41] to solve it. We have
found that applying SVMs to the distribution feature vector at a simulation time
that is a small percentage of the total time needed for the final aggregated shape
to form produced acceptable results. Given 200 MP simulations for a variety of
bifurcating self-organizing shapes we found that we could predict the outcome of
the aggregation at a time point 5% to 10% into the simulation with an accuracy of
81% to 91%. We view these results as satisfactory because they demonstrate that
a strong correlation between a swarm’s moments and its final formed shape does
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exist. More details about this study may be found in [39] and [4].

4. Directing Spatial Self-Organization

Since the outcome of an MP simulation can be predicted at an early stage of
aggregation using the moments of the agents’ positions, we then explored methods
for controlling the swarm via manipulating the moments of the swarm’s initial
configuration. The general strategy is to create random initial configurations for
the MP simulations, but with constrained, biased moments. We have observed
that this strategy can consistently direct the swarm to aggregate into specific final
configurations. The first step of the strategy analyzes the bifurcating simulations to
determine which of the moments diverge the most for the two different outcomes.
This is the moment that will be biased in the swarm’s initial, random configuration.

4.1 Moment Analysis

One of our aggregations, which produces what we call the quarter-moon shape,
provides an example of the moment analysis. Of the 200 simulations starting with
a uniform random, unbiased initial condition, 100 produce left-pointing structures
and 100 produce right-pointing structures. Figure 5 shows a typical swarm aggre-
gation for this shape. The four moments of both x and y coordinates are calculated
over all 35,000 simulation steps. Additionally the mean and standard deviation of
each statistical moment are calculated for the two categories, i.e. left-pointing and
right-pointing, over the simulation time steps. Plotting the mean and the mean ±
standard deviation of the moments over time immediately highlights the moments
which are the most differentiating and may be used to identify specific shapes.
For the quarter-moon example the third x moment (skewness) is the one with the
greatest separation of values for the two possible outcomes, as seen in Figure 6.
The solid and dashed lines are the mean of the skewness of the x coordinate for the
two outcomes. The dotted and dot-dashed lines are mean ± standard deviation.
The dashed curve is produced from structures that are right-pointing and follow
the path in the top of Figure 5. The solid curve is produced from the left-pointing
structures, with a typical aggregation presented at the bottom of Figure 5.

By analyzing the time series in Figure 6, we see that the skewness of the x co-
ordinates of the two classes starts at about the same value, approximately −0.05
to 0.05, at time step 0. The values should be near zero, since all simulations begin
with uniform random configurations. The skewness of the two classes first separates
by increasing or decreasing, followed by a zero crossing and then a reversed trend
appears until they reach their final states at step 35,000. Observing the values for
the solid and dashed curves over all simulation time steps, we can identify three
regions in the plot: a region occupied by solid/dotted curves only, a region occu-
pied by dashed/dot-dashed curves only and an overlapping region. To be specific,
considering the values of x skewness in Figure 6 (by projecting the curves into
the y axis), the range of [−0.195,−0.150] is covered by solid/dotted curves only;
[0.150, 0.190] is covered by dashed/dot-dashed curves only and [−0.150, 0.150] is
covered by both outcomes.
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When determining the appropriate threshold value for a constrained moment, we
start with the mean value of the non-overlapping moment range for a particular
shape, and then adjust if needed. For the region covered only by the quarter-moon’s
dashed/dot-dashed curves (for right-pointing shapes) the mean value of skewness is
0.170. While using this value for the moment constraint produced reasonable results
(94% of the biased initial conditions produced the desired shape), we found, via
multiple experimental runs, that the threshold value on the skewness had to be
increased to produce a consistent result. In general this was the process employed
for determining the moment constraint thresholds needed to generate the desired
outcomes.

4.2 Generating Constrained Biased Distributions

Once the most significant distinguishing moment (the one with the greatest value
difference in the final configuration) for a shape is identified, the information is
utilized to direct the shape aggregation by imposing constraints on this moment in
the initial conditions. We assume that the MPs’ x and y coordinates are indepen-
dent, and therefore create two probability density functions, each representing the
x and y coordinate. One probability density function is created for the constrained
coordinate and the other coordinate is considered to be uniformly random. Sam-
ples are drawn independently from the two distributions to produce a single (x, y)
location.

This approach generates random distributions, i.e. 2D random initial configura-
tions for the shape simulation, that meet a constraint on a particular moment in
the x or y coordinate. We have found that constraining one of the eight moments
(mean, variance, skewness and kurtosis for x and y) is sufficient for producing
satisfactory results. Constraining multiple moments does not significantly improve
the outcomes, and would further complicate the process of generating initial con-
ditions. Once one significant moment of a distribution and its threshold value have
been identified, the remaining three moments for that spatial coordinate (x or
y) may be set to values observed in uniform random distributions. These values
are mean = 500 (the center of our computational arena), variance = 15, 000,
skewness = 0 (to make the distribution symmetric), and kurtosis = 2. Once the
four moments for one of the coordinates have been specified, a probability density
function (PDF) with those moments is defined. The values for the other coordinate
are generated from a uniform random distribution.

For the constrained dimension we create a Gram-Charlier expansion of the nor-
mal distribution (chosen for its convergence properties) with specified moments
[42]. This Gaussian-expanded probability density function is then discretized with
100,000 samples with values falling within the range of 0 to 1000 (the range of
the computational arena). Slice sampling [43], a Markov chain sampling method
chosen for its efficiency, is then utilized to draw 500 samples from this discretized
distribution. Theoretically, the specified PDF can be sampled to produce a distri-
bution that has the same moments as the PDF. Our experience has shown that
the sample size needs to be quite large (on the order of 1 million) for this to be
true. For our sample size of 500 (the number of MPs in an aggregation simulation)
and heavily biased PDFs, the resulting moments of the finite sample set do not
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necessarily match the ones desired for a particular shape.
As the distribution generation process cannot guarantee that a sampled distribu-

tion will meet the required moment constraints, the four moments of the generated
distributions for the constrained coordinate are computed to determine if the con-
straint is actually met. If the value of the significant moment is not above or below
(depending on the constraint to be enforced) the specified threshold, the sampled
distribution is rejected. If the constraint is met, the distribution is accepted as the
initial conditions for a simulation computation.

Since our agents are not points, but in fact are discs with a fixed radius, we
maintain a distance of 2R (where R is the radius of a disc) between sample points,
to ensure that the MPs do not overlap. Therefore, if an (x, y) pair is generated
that is less than 2R distance to a previously generated location, it is rejected and
another (x, y) pair is calculated. This process continues until a sufficient number
of MP locations are generated for the initial conditions.

We have found that it is more computationally efficient to generate numerous
smaller sample sets and then merge them into a single point set, rather than at-
tempt to compute a single, large point sample, when composing biased initial con-
ditions for our aggregation simulations. We apply this approach by drawing 50
subsets, Tk=1,...,50 of 10 samples, rather than 1 set of 500 samples. Each sample
drawn is checked for overlap with existing samples, discarded if overlap exists, and
otherwise added to the current Tk. Once each Tk has 10 samples, it is checked for
conformance to the moment restrictions prior to insertion into the final set, S, of
500 samples. If a given Tk fails, a new Tk is drawn. An acceptable Tk is merged
with S, which is then checked for conformance to the moment restrictions. If the
updated S does not pass, it is reverted to its prior state, S − Tk, and a new Tk is
drawn. This process continues until |S| = 500. The algorithm for generating biased
initial condition, once the initial sampling does not meet the moment requirements,
is diagrammed in the flowchart at the top of Figure 2. Via this approach, we are
able to generate initial conditions for our computational experiments in a few sec-
onds, as opposed to several hours, when attempting to generate all 500 points of
S at once for certain “extreme” biased conditions, e.g. low kurtosis.

5. Results

We have applied our method for directing spatial self-organizations, which gener-
ates biased initial configurations, to a number of bifurcating shape aggregations.
We refer to the resulting shapes as the quarter-moon, ellipse, discs, and two parallel
line segments. These shapes (and their associated chemical fields) were utilized in
an earlier study [4], and had shown not to produce a single final, aggregated result.
In our initial MP work it was not uncommon for the output of the evolution pro-
cess to generate chemical fields that led to the formation of different shapes from
a single field. These four were chosen because they generated two different shapes
in equal proportions (except for the parallel lines shape) from uniformly random
initial conditions. The chemical field functions that direct MPs to form into these
shapes are detailed in Table 1. Given biased initial conditions the aggregation simu-
lations produce one final outcome in almost all of cases. Moreover, by thresholding
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Shape Field Function

1.0/(ln(ln(ln(exp(sin(ln(cos(θ) ∗ (((d+ 0.761214) ∗ ln(d)) +

ln(d− θ)))) ∗ (θ − eθ)))− ((θ − d) ∗ (d/θ)))− ((θ − eθ) ∗
quarter-moon ln(ln(exp(sin(ln(cos(θ) ∗ (((d+ 0.761214) ∗ ln(d)) +

ln(d− θ)))) ∗ (((θ − eθ)− ((θ − eθ) ∗ (d/θ))) + 0.432846))) −
((θ − d) ∗ (d/θ))))))

ellipse 1.0/ cos(θ) + ln(d)

discs 1.0/(cos(sin(θ)− (cos(θ)− (ln(−0.367378)/(θ + d)))) + ln(d))

lines 1.0/(ln(ln(ln((cos(cos(d)) + (d ∗ (3d+ ln(θ) + ln(ln(θ)))))+

(((ln(θ)/(0.285192)) ∗ ((1.0/θ) + 0.423969))/d)) + d) + d))

Table 1. The field functions for the MPs utilized in this study. Note that exp(x) signifies ex.

the moment constraints on the biased initial conditions it is possible to control
which shape is produced by a simulation. Figure 4 (top row) shows biased initial
conditions for a number of shape aggregations created with this method. The bot-
tom row illustrates the final outcome of each MP simulation that is produced from
the associated biased starting configuration.

In order to identify the significant, distinguishing moments for each shape, ag-
gregation simulations (usually several hundred) with unbiased initial conditions
are first performed. The shapes of the final outcomes are visually inspected and
placed into categories. For each final shape, the mean and standard deviation of
the four statistical moments of the evolving system are computed over the entire
shape aggregation process. For simulations starting with uniform random, unbiased
initial conditions, the final outcomes of the quarter-moon, ellipse and discs shapes
evenly split into two categories, with roughly 50% of the final outcomes belonging
to each class. The outcomes of the parallel line shapes are unbalanced, with 84.1%
belonging to the majority class (two lines) and 15.9% belonging to the minority
class (one line). These results, as well as the details that follow in the remainder
of the section, are summarized in Table 2.

A typical unbiased aggregation for the quarter-moon shape is shown in Figure 5.
The simulation reaches a stable state by 35,000 simulation steps. We identified
skewness in the x coordinate to be the significant macroscopic feature for this shape.
See Figure 6 for the evolution of this feature over the course of the aggregation given
uniform random initial conditions. Two sets of biased initial conditions (each with
100 examples) were generated with constrained skewness values in the x coordinate,
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Quarter-moon

Shapes
Unbiased
Percentage

Thresholded Moment
Biased
Percentage

left-pointing 50% Skewnessx ≥ 0.315 100%

right-pointing 50% Skewnessx ≤ −0.315 100%

Ellipse

Shapes
Unbiased
Percentage

Thresholded Moment
Biased
Percentage

single ellipse 50% Kurtosisy ≥ 2.18 100%

non-single ellipse 50% 0%

two ellipses − Kurtosisy ≤ 1.85 100%

Multiple Discs

Shapes
Unbiased
Percentage

Thresholded Moment
Biased
Percentage

three discs 0% V ariancex ≤ 10, 270 100%

no three discs 100% V ariancex ≥ 15, 500 100%

Shapes
Unbiased
Percentage

Thresholded Moment
Biased
Percentage

three discs 0% 4%

four discs 50% 1.99 ≤ Kurtosisx ≤ 2.09 75%

five or more discs 50% 21%

Parallel Line Segments

Shapes
Unbiased
Percentage

Thresholded Moment
Biased
Percentage

two lines 84.1% Kurtosisx ≤ 1.90 100%

one line 15.9% Kurtosisx ≥ 2.29 100%

Table 2. Table summarizing results generated with unbiased and biased initial conditions.

with the thresholds set as greater than 0.315 (2 standard deviations from the
mean) and less than −0.315. Since the distributions are generated stochastically,
they do not have the exact targeted skewness value. So our acceptance test is
based on a threshold. We performed simulations with the quarter-moon interaction
function for these 200 biased initial conditions. Of the 100 initial conditions with
a thresholded third x moment below −0.315, 100% of the final outcomes are right-
pointing structures. Of the 100 initial conditions with a thresholded third xmoment
above 0.315, 100% are left-pointing structures. Figure 7 presents the evolution of
this feature over the course of the aggregation given the biased initial conditions.

A typical unbiased aggregation for the ellipse shape is shown in Figure 8, with half
of the unbiased initial conditions producing a single “perfect” ellipse, with the other
half producing either two ellipses or a deformed “blob”. The unbiased simulation is
computed for 10,000 steps. If the simulations are run for 50,000 steps they all will
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produce a single ellipse. Kurtosis in the y direction was found to be the significant
macroscopic feature for this shape. See Figure 9 for the evolution of this feature
over the course of the aggregation given uniform random initial conditions. 100
simulations were performed with initial conditions that had their y coordinates’
kurtosis thresholded to be above 2.18. Given these biased initial conditions all
simulation (100%) produced a perfect single ellipse by step 7,500. 100 additional
simulation were performed with initial conditions that had their y kurtosis set below
1.85. All 100 simulations produced two ellipses by step 7,500. Figure 10 presents
the evolution of this feature over the course of the aggregation given the biased
initial conditions. These results show that not only can biased initial conditions
direct the outcomes of the simulations, but they can also significantly speed up the
formation of the desired result, with the single ellipse being guaranteed to form by
50,000 steps in the unbiased case and by 7,500 steps given biased initial conditions.

The discs dataset, when run with 200 unbiased initial conditions, produces 100
four discs structures and 100 structures of five or more discs, with a typical shape
aggregation shown in Figure 11. The simulation reaches a stable state by 15,000
steps. We identified variance in the x direction to be the significant macroscopic
feature for this shape. See Figure 12. In our experiments as the variance of the
initial conditions was lowered, we found that we could generate a new shape (one
that did not appear with unbiased initial conditions), that contained only three
discs. Thresholding the x variance of the initial conditions to be less than 10,270
would always (100%) produce a 3-disc result. A typical 3-disc shape is presented
in Figure 4(c). We were unable to consistently generate a 4-disc result for most
simulations by thresholding the variance. Thresholding the x kurtosis to be greater
than 1.90 and less than 2.09 did lead to an increased number of 4-disc results
(75%), which we deemed as less than consistent or robust. Figure 13 presents the
evolution of x variance over the course of the 3-disc aggregation given the biased
initial conditions. Note that no 3-disc results were produced when keeping the x
variance above 15,500 in the biased initial conditions.

The parallel line dataset, when run with unbiased initial conditions, contains 526
instances of two vertical parallel line segments (84.1%) and 100 instances of one
vertical line (15.9%), as seen in Figure 14. The simulation reaches a stable state
by 50,000 steps. We identified kurtosis in the x coordinate to be the significant
macroscopic feature for the shape. See Figure 15. 100 simulations were performed
with initial conditions that had their x coordinates’ kurtosis thresholded to be
below 1.90. Given these biased initial conditions all simulation (100%) produced
the two line structure. 100 simulations were then performed with initial conditions
that had their x coordinates’ kurtosis thresholded to be above 2.29. These biased
conditions produced results that consistently (100%) created the minority class
structure of a single line by 10,000 steps. Figure 16 presents the evolution of x
kurtosis over the course of the aggregation given the biased initial conditions.

6. Discussion

Our experiments show that our agents (MPs) can be reliably directed to form
into large-scale, macroscopic structures using local-only behaviors, based on chem-
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ical diffusion fields and biased initial conditions; thus producing a stigmergic phe-
nomenon [44]. This type of global outcome is of particular interest to those looking
for a robust, adaptable, and independent self-organizing system. A review con-
ducted by the European Space Agency has shown that for their harsh working
environment (space, Mars, etc...) the robustness of a local-only system is a key
consideration and would allow for relatively simple (and easy to transport) satel-
lites/equipment to form into a larger and more complex system that would be
impossible to transport as a monolithic structure [45]. Systems using global infor-
mation, with centralized communication between primitives, or a command-and-
control structure, can form more complex shapes more quickly than local-only
approaches. However these systems can fail if this communication is interrupted or
the command-and-control structure breaks down [46].

The reasons that certain biased initial conditions may be used to direct the
outcome of an aggregation process are frequently visually obvious. For example,
the biased initial conditions seen in Figure 4(a) are clearly skewed to the right side
of the arena. So it is clear that the majority of the agents are already amassed
around the center of the object to be formed. This can also be seen in Figure 4(c),
where lowering the variance of the X component makes the initial distribution of
the MPs cluster around the central axis which the three discs will form along. The
visual evidence that biasing initial conditions effectively pre-starts the aggregation
process towards a desired shape is not as evident in the examples that constrain
kurtosis ((b) and (d)). A higher Y kurtosis value in example (b) means that there
should be a higher concentration of agents along the Y = 500 axis. In (d), a lower
X kurtosis value means that there should be more agents distributed away from
the center of the arena. But in both of these cases, while statistically this is true,
it is not visually evident.

It should be noted that not all shapes are stable throughout the simulation. The
vertical lines being a good example; up to approximately 5,000 steps the 1-line
and 2-lines shapes look very similar and have similar statistical moments, however
between 10,000 and 45,000 steps 15.9% of the simulations will converge into a single
line. This shows that some shapes may appear to be stable at one point during
a simulation, when actually they have not yet stabilized. Or in other words, our
agents may produce more than one type of distinct shape during their evolution.
Thus, our experiments show that we are able to consistently produce certain self-
organized swarms at a specific point in time during their aggregation.

For these types of self-organizing systems, it is clearly desired to have a com-
pletely local solution. Given that the methods described here require the compu-
tation of global system-level quantities (moments of the entire distribution) and
the manipulation of the locations of the agents in order to meet some global con-
straint, we have not achieved this goal. In the future, we intend to explore if our
genetic programming approach to local chemical field evolution, that leads to the
formation of macroscopic shapes, can also be used to find chemical fields (i.e. local
interactions) that direct a swarm that is uniformly randomly distributed into one
that has specific statistical properties. This would lead to a two-step approach that
is truly based on local-only interactions. In this case, the agents, which have been
uniformly randomly placed in an environment, would follow chemical fields that
move them into a biased initial condition. Then they would switch to a field that
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robustly directs them to form in a specific macroscopic shape.
Additional future work with this system will involve robustness testing of the

parameters of the initial conditions. Previous work in this area has defined a lower-
bound for the number of primitives required to successfully create a single ellipse
(400), but has not defined an upper-bound [47]. An upper and lower bound on
the number of primitives (which of course is related to MP density) in the simula-
tion is important as more complex shapes are created. Additionally future work will
involve further analysis of the aggregation processes that cannot be completely con-
trolled. These investigations should reveal new features that differentiate swarms
that can be controlled via the reported method and those that cannot. We imagine
that manipulation of other features will further enhance our ability to direct our
self-organizing system.

Ultimately we would like to implement our spatial self-organization approach
in a swarm robotics system. We believe that this would be feasible with robots
that communicate locally via Bluetooth. Given that all robots emit the same field,
a single robot can compute the cumulative chemical field and its gradient at its
location simply by knowing the distances and angular relationships of neighboring
robots from itself. If each robot has a unique broadcasted ID, we imagine that
distance could be derived from signal strength and angular information could be
computed from inputs from multiple antennae. We have had discussions with a local
roboticist about the possibility of using her swarm robotics platform to investigate
our methods for distributed control.

7. Conclusions

We have previously developed an agent-based self-organizing shape formation sys-
tem. The agents perform identical behaviors based on sensing local information
emitted into the environment by the agents. Genetic programming may be used to
discover local interaction rules that lead the agents to self-organize into a number
of user-specified shapes. However, since the agents are initially uniformly randomly
placed in the environment and they stochastically follow prescribed rules, the aggre-
gation simulations do not always produce the same final results. In order to develop
methods that could be used to direct the agents to robustly form one specific con-
figuration, we explored the relationships between an agent swarm’s moments and
its final configuration. After having shown that these moments could be used to
predict the outcome of an MP aggregation in previous work, we demonstrate in
this work that biasing the swarm’s initial conditions based on these moments can
be used to consistently direct the swarm to produce a desired macroscopic shape.

By analyzing the statistical moments of the agents’ positions over the entire shape
aggregation process, we have identified significant, distinguishing moment features,
and utilize them as constraints on simulation initial conditions for a number of
bifurcating shapes. Biased initial conditions may be generated that meet these
moment constraints, which then affect the resulting shape outcomes. In almost all of
our examples we can completely control the result of the self-organization process.
In some other cases we can significantly increase the likelihood of producing a
desired configuration. In a more general sense, our work also indicates that complex,
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non-linear dynamical self-organizing systems may be controlled by manipulating
their initial conditions.
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Figures

Figure 1. Morphogenetic Primitives self-organizing into a star shape. Initially published in [2].
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Figure 2. Schematic diagram of the directed self-organization process based on specifying biased initial
conditions for Morphogenetic Primitives.
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Figure 3. The genetic programming process that produces the local chemical field functions of the shape
primitives. Initially published in [1].
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(a) (b) (c) (d)
Figure 11. (top row) Biased initial conditions ((a) x skewness = -0.268, (b) y kurtosis = 2.150, (c)
x variance = 9,596, (d) x kurtosis = 1.88) that robustly evolve (bottom row) into (a) a right-facing
quarter-moon, (b) a single ellipse, (c) three discs and (d) two line segments.
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(a) (b) (c) (d)

Figure 4. (top row) Biased initial conditions ((a) x skewness = -0.315, (b) y kurtosis = 2.150, (c) x variance
= 9,596, (d) x kurtosis = 1.88) that robustly evolve (bottom row) into (a) a right-pointing quarter-moon,
(b) a single ellipse, (c) three discs and (d) two line segments.
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Figure 5. Shape aggregation of the quarter-moon MPs starting from random initial conditions.
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Figure 6. Skewness of the x coordinate of the unbiased quarter-moon shape aggregations over time.
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Figure 7. Skewness of the x coordinate of the biased quarter-moon shape aggregations over time.
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Figure 8. Shape aggregation of the ellipse MPs starting from random initial conditions.
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Figure 9. Kurtosis of the y coordinate of the unbiased ellipse shape aggregations over time.
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Figure 10. Kurtosis of the y coordinate of the biased ellipse shape aggregations over time.
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Figure 11. Shape aggregation of the discs MPs starting with random initial conditions.



March 13, 2018 0:48 The International Journal of Parallel, Emergent and Distributed Systems
IJPEDS17˙arXiv

REFERENCES 29

0 2000 4000 6000 8000 10000 12000 14000
Simulation Time

9000

10000

11000

12000

13000

14000

15000

16000

17000
M

om
en

t R
an

ge
solid = four discs, dashed = not four | variance

Figure 12. Variance of the x coordinate of the unbiased discs shape aggregations over time.

0 2000 4000 6000 8000 10000 12000 14000
Simulation Time

2000

4000

6000

8000

10000

12000

14000

16000

M
om

en
t R

an
ge

solid = three, dashed = not three | variance

Figure 13. Variance of the x coordinate of the biased discs shape aggregations over time.
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Figure 14. Shape aggregation of the line segment MPs starting from random initial conditions.
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Figure 15. Kurtosis of the x coordinate of the unbiased line segment shape aggregations over time.
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Figure 16. Kurtosis of the x coordinate of the biased line segment shape aggregations over time.


