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Abstract—We present a flexible, multi-agent approach to pre-
dictive classification problems which uses simple, modular agents
that interact and share information socially in an arena with a
variable number of participants. Opinion aggregation is accom-
plished using a honey-bee-derived optimization algorithm that
improves accuracy and reduces variance compared with existing
weighted and unweighted voter mechanisms. Confidence metrics
may be derived from the agent interactions. We apply our system
to a data set of 483 de-identified breast cancer patients to predict
node-positive or node-negative disease with over 78.5% accuracy
in general. When eliminating low-confidence predictions, which
leaves 79.5% of patients, classification accuracy improves to
84.5%.

Index Terms—classification, prediction, multi-agent, collective-
intelligence, swarm, nomogram, wisdom-of-crowds, breast cancer

I. INTRODUCTION

This work presents an alternative to artificial neural net-
works (ANNs). The basis for this approach, as previously
reported in [1], can be found in both prediction markets (PMs)
and wisdom-of-crowds (WoC) theories. Prediction markets
aim to determine the probability of a future event by collecting
truthful input from agents (human or computer), aggregating
that information and forming a collective knowledge [2].
However, PMs expect participants to be well-informed agents,
something that is both ‘hard’ and computationally infeasible
for any sufficiently large system [3]. WoC presents an alterna-
tive to PMs, where participants are not required or expected to
be well-informed. Indeed, WoC relies on a more diverse crowd
to arrive at a small predictive error [4]. In order to generate
a correct prediction, a WoC system requires an advanced
aggregation mechanism to elicit an overall prediction from
the crowd of participants [5]. Previous work has investigated
Unweighted Mean Model (UWM), Weighted Voter Models
(WVM), and other simple aggregation mechanisms with vary-
ing levels of success [1], [6], [7]. We now employ a different
approach that uses a honey-bee-derived swarm optimization

algorithm as an aggregation mechanism to provide improved
results.

We apply this work by retrospectively examining tumor
characteristics acquired in the routine care of patients at Drexel
University College of Medicine to make a binary classifica-
tion, node-positive or node-negative, that predicts lymph node
metastasis status, a determination that could obviate surgical
dissection of the lymph nodes. Multiple methods exist for
predicting lymph node metastasis in breast cancer patients,
the Memorial Sloan-Kettering Cancer Center (MSKCC) nomo-
gram is an early attempt at solving this problem, that uses
standard patient characteristics, such as patient age, primary
tumor size, presence of lymphatic invasion, histologic grade,
among others [8]. The MSKCC has, however, shown incon-
sistent results across data sets and may not be viable as a
tool for decision making in some patient populations [9], [10].
Similarly, we use available patient characteristics to predict
whether lymph node metastasis has occurred in breast cancer
positive patients.

Further, a swarm aggregation mechanism is used to place
predictions in confidence intervals, which leads to an im-
provement of overall system accuracy for a subset of high-
confidence subjects.

II. METHODS & DESIGN

A. Patient Features

Our agent-based method was used to predict lymph node
metastasis in 483 de-identified breast cancer patients. This
research was approved by the Drexel University IRB office,
with the data being distributed to the investigators using an
honest broker. Our work considered all features which were
available for at least 50% of patients, unlike previous work
which considered only highly correlated features and required
feature completeness [11], [12]. Table I shows the clinical
features available for classification. Not all features were
available for each patient.



TABLE I
CHARACTERISTICS OF PATIENT POPULATIONS

Feature n = 483 %
Age

≤ 45 103 21.3
> 45 380 78.7

Primary Tumor Max size (mm)
≥ 200 5 1.0
100-199 15 3.1
50-99 51 10.6
25-49 125 25.9
0-24 271 56.1
unknown 16 3.3

Angio Lymphatic Invasion
Absent 127 26.3
Present 200 41.4
Indeterminate 25 5.2
Unknown 131 27.1

pT Stage
Unknown 36 7.5
pT1 210 43.5
pT2 173 35.9
pT3/pT4 64 13.3

Histologic Grade
Unknown 33 6.8
1 53 11.0
2 164 34.0
3 233 48.2

Tubule Formation
Unknown 30 6.2
1 (> 75%) 13 2.7
2 (10− 75%) 98 20.3
3 (< 10%) 342 70.8

Nuclear Grade
Unknown 29 6.0
1 20 4.1
2 151 31.3
3 283 58.6

Lobular Extension
Unknown 202 41.8
Absent 147 30.4
Present 134 27.7

Pagetoid Spread
Unknown 213 44.1
Absent 177 36.6
Present 93 19.3

Perineureal Invasion
Unknown 267 55.3
Absent 186 38.5
Present 30 6.2

Calcifications
Unknown 115 23.8
Absent 126 26.1
Present 176 36.4
Present w/ DCIS 66 13.7

ER Status
Unknown 51 10.6
Negative 155 32.1
Positive (> 10%) 277 57.3

PR Status
Unknown 54 11.2
Negative 201 41.6
Positive (> 10%) 228 47.2

P53 Status
Unknown 81 16.8
Negative 255 52.8
Positive (> 5%) 147 30.4

Ki67 Status
Unknown 56 11.6
Negative 114 23.6
Positive (> 14%) 313 64.8

Her2 Score
Unknown 83 17.2
0 119 24.6
1 169 35.0
2 54 11.2
3 58 12.0

In addition to the basic score values for ER, PR, P53,
Ki67, and Her2, the agents were given access to the raw
count values (when available) for 1+, 2+, 3+, 0 cells, total
cells, membrane intensity (where applicable), and positive
and negative intensities (where applicable). These values were
collected using quantitative image analysis applied to whole-
slide images of representatives slides acquired at the time of
diagnosis. Slide scanning was done on either Aperio XT or
Hamamatsu S210 slide scanner with quantification performed
using Aperio Imagescope software and conformed to College
of American Pathologists (CAP) recommendations. In testing,
none of these values were shown to be highly correlated with
the outcome individually, but showed an increase in overall
swarm performance when the data were included.

B. Design Overview

Our approach uses simple agents (WoC-Bots) without expert
knowledge that interact with each other in a “social interaction
arena” to transfer information and formulate opinions [1]. The
agents are trained with different, small, subsets of features
that describe the classification task at hand. This initially
gives us a group of agents with a diverse and independent
set of knowledge. Previous work in this area used simple
agents built around a small multi-layer perceptron classifier
(MLP). During social interactions in the arena, agents learn
not just the current prediction of other agents, but also their
past performance and trust values. The social interactions
allow agents to generate and update trust values associated
with each agent they interact with based on prior prediction
performance, certainty in the current prediction, and other
performance-based metrics. Following an interaction period an
overall prediction is generated with an aggregation mechanism
that uses trust as one of the weights when determining the
amount of votes each agent received. The work presented in
this paper uses a similar system and agent design as described
above, however each agent uses a 5-layer (3 hidden) MLP
classifer instead of the 3 layer classifier described in [1].

Eight to ten randomly selected features are distributed to
each agent, with each agent also receiving two highly corre-
lated additional features, “primary tumor size” and “histologic
grade”. Correlation for “primary tumor size” and “histologic
grade” was determined using standard principal component
analysis (PCA) externally to the system presented here. The
MLP classifier for each agent is first trained, agents are then
initialized in an MxN grid-based interaction arena where
the final arena size is set such that there are two times as
many spaces as there are participating agents. Arena sizing
was determined through performance testing, with 2x showing
a good balance between freedom of movement and agent
interaction opportunities.

C. Interaction Period

This work follows the interaction period described in [1],
initializing agents randomly in the arena, and ensures that
no agents share the same space in the arena at initialization.
Agents move throughout the arena in a “Manhattan-like”



fashion, moving one step north, south, east, or west within the
bounds of the arena. The direction is randomly selected, agents
are not allowed to interact with the same agent two times in
a row or more than twice within five separate movements.
Agents who cannot move while avoiding these restrictions are
“teleported” to a randomly selected empty space within the
arena. Further, agents are “teleported” to a random, empty,
space every 10-15 iterations to facilitate additional information
dispersal. The interaction operates in discrete iterations where
each agent is moved during each iteration, and if two agents
meet, the interaction between them must finish before the next
iteration (and movement) can continue.

The system handles missing data for any given patient by
simply disallowing participation of agents that have missing
data for the current patient. This method allows us to consider
all available information for each patient without requiring
data completeness for all patients.

During the interaction period the participating agents in-
teract with each other when two (but not more than two)
agents share a single grid space within the arena. The goal
of the interaction period is information sharing. Agents share
their input features, initial MLP classification results, current
prediction, and variables that represent past performance,
allowing each agent participating in the interaction to update
their current prediction based on shared knowledge. When two
agents interact, agent a and agent b, the internal state of the
agents will change, updating the agent’s current prediction.

Previous work in [1] provides additional details about the
interaction period and the equations that govern information
sharing between agents and how the interactions change the
internal state of each agent.

D. Swarm Aggregation

Prediction aggregation in multi-agent / social systems is
an open problem with various different proposed solutions
[13]. We tested previously described methods, the Unweighted
Mean Model [6] and Weighted Voter Model [7], with both pro-
ducing inconsistent results; simulation accuracy varied based
on the randomized agent initialization within the interaction
arena and the order of agent interactions. A trust-based ag-
gregation model described in [1] performed more consistently
than either the UWM or WVM, but had, on average, worse
accuracy than the WVM for this data set.

Due to the successful aggregation of human opinions found
in [14] and [15] using “swarm intelligence”, we implemented
a swarm-based aggregation mechanism, specifically modeled
on honey-bee foraging behavior. Bee colonies are able to
forage across a large area in multiple directions, often finding
optimal sources for nectar and pollen – a similar task to
many optimization problems in computer science. A subset of
bees (the scouts) move throughout the colony’s foraging area,
searching for high yield food sources [16]. Upon returning
to the colony the scouts can perform a “waggle dance”,
advertising the location of the food source to other bees
within the colony, which can then forage at the advertised
location. The length of time a bee is dancing is generally

proportional to the quality of the food source, with additional
bees recruited to higher quality food sources due to longer
“waggle dances” [17]. This allows for high yielding food
sources to be advertised and foraged as long as they remain
productive, with a drop off in interest as better sources are
found or as the source becomes depleted [18].

Our algorithm is an approximation of the bee behavior
described above. The swarming period has a single goal,
for all agents to support a single opinion, either 1 or 0,
rather than all agents supporting a single ‘presenting’ agent.
20% of the agents are randomly selected to present their
opinion from the overall population of agents; these agents
are the ‘presenters’ and are analogous to the ‘scout’ bees. The
remaining 80% of non-presenting agents are ‘watchers’. All
agents that participated in the interaction step – those with
complete data for the current patient – must participate in the
swarming step.

The presenting agents do not perform a dance, simulated
or otherwise, instead the watching agents are assigned to
support the presenting agents based on roulette wheel selec-
tion, also called “fitness proportionate selection” [19]. Each
presenting agent is assigned some probability, aprob, between
0 and 1 such that the sum of all probabilities of all pre-
senting agents is 1 after normalization. aprob is calculated
by Eq. 1, an equally weighted combination of the presenting
agent’s prior_performance, apriorPerf , confidence,
aconfidence, and trust_score, atrust.

aprob = (apriorPerf ∗ aconfidence ∗ atrust)/3 (1)

Once probabilities have been computed for all presenting
agents the roulette wheel selection algorithm assigns watch-
ers to support each presenting agent using aprob such that
presenting agents with a high aprob value will be assigned
watching agents more frequently than presenters with a low
aprob value. In this context, a watching agent “supports” a
presenting agent by being assigned to the presenting agent.
The watching agent cannot be assigned to multiple presenting
agents simultaneously and can be re-assigned to a different
presenting agent up to two times if its prediction is different
from the presenting agent’s prediction and if the watching
agent has a higher apriorPerf score than the presenting agent.
This allows agents with a history of strong performance an
opportunity to move to a presenting agent it thinks best repre-
sents its predictive belief. After assignment, and re-assignment
if applicable, is complete each presenting agent will represent
the watchers it is assigned. For example, if a presenter is
assigned 10 watchers the presenting agent’s opinion will be
worth 11 ‘votes’ during the final aggregation step – the 10
watchers and its own prediction.

The swarm goes through a series of iterative steps to arrive
at a prediction. That is, the swarm will generate a final binary
prediction with an assigned confidence value through repeating
the above process of assigning watchers to presenters and
taking a vote of all presenters, iteratively lowering the decision
threshold after a set number of iterations if the threshold is
not met. Initially the threshold is 100% agreement; if the



initial selection of presenting agents all agree on a prediction
this is considered a “Very High Confidence” prediction, the
prediction is made, and the swarming period is ended. If
there is no immediate agreement the agents will perform
an interaction period (the same interaction that happens in
the interaction arena) with all other agents assigned to the
presenting agent they are also assigned to, as well as the
presenting agent, to facilitate additional information sharing. A
new selection of presenting agents will be randomly selected
and the swarm will go through the same steps previously
outlined. This process is allowed to run for 100 iterations
and the threshold for agreement is lowered to 90%, if at any
point 90% or more agents support the same prediction the
swarming period is ended and the prediction is considered
“High Confidence”.

If neither of the previous cases are met the support threshold
is lowered to 75% and the swarm is allowed an additional
50 iterations of information sharing and selection. If the 75%
support threshold is met during this period the prediction is
considered “Medium Confidence”. If the swarm has still not
arrived at a prediction by this point, a simple unweighted vote
is taken from all agents (presenters and watchers) and the
prediction is considered “Low Confidence”.

The above process allows us to assign a pseudo-confidence
value to each prediction based on the number of iterations it
takes the swarm to arrive at a conclusion and the percent of
agents supporting the conclusion. The confidence values are
summarized as:

• Very High Confidence: All agents agree on a prediction
class immediately following roulette-wheel selection,

• High Confidence: 90% of agents agree on a prediction
class immediately following roulette-wheel selection or
after 100 additional iterations,

• Medium Confidence: 75% of agents agree on a prediction
class after 100-150 additional iterations,

• Low Confidence: Unweighted vote of presenting and
watching agents.

III. RESULTS

A. Swarm Aggregation

Fig. 1 shows 5-fold validation results for predicting lymph
node metastasis status from the clinical features listed in Table
I, with the output from the WVM on the left and our bee-
inspired swarm aggregation method on the right. The folds
used to test the WVM and the swarm aggregation method were
the same, i.e. they were not re-randomized between tests. The
averaged 5-fold results for accuracy, sensitivity, and specificity
can be seen in Fig. 1. The swarming method improved average
accuracy by 6.2%, the sensitivity by 10.9%, and the specificity
by 2.0% compared with the WVM aggregation method. The
worst case values for accuracy, sensitivity, and specificity were
improved using the swarm method, with a worst-case accuracy
in the WVM of 67% in fold 1 improved to 79.4% using
the swarm. The bee-inspired swarm method was strictly an
improvement for both the accuracy and sensitivity statistics.

TABLE II
SWARM AGGREGATION VS. WEIGHTED VOTER MODEL VARIANCE (σ2)

Method Accuracy (σ2) Sensitivity (σ2) Specificity (σ2)
Swarm 2.30 20.99 0.35
WVM 24.52 74.0 20.68

TABLE III
CONFIDENCE INTERVAL DISTRIBUTION AND ACCURACY

Interval n = 483 % of n Accuracy (%)
Very High Confidence 3 0.62 100
High Confidence 156 32.3 90.1
Medium Confidence 225 46.6 80.9
Low Confidence 99 20.5 59.7
Very High + High + Medium 384 79.5 84.79

However, the WVM out-performed the swarm method for
specificity in 2 of the 5 folds (folds 2 and 4), despite the
2% average improvement.

The WVM showed significant variance across each fold,
which we aimed to reduce using the swarm aggregation
method. Table II shows the variance across the same five folds
shown in Fig. 1 for both the WVM and swarm aggregation
methods, with the swarm method showing significantly re-
duced variance for accuracy, sensitivity, and specificity mea-
surements.

B. Confidence Intervals

We applied the four confidence intervals described in Sec-
tion II-D to the patients in our data set. The results shown
in Table III represent the accuracy values for each confidence
interval. The “Very High Confidence” category captured only
0.62% of patients and was not considered useful for this
data set. The “High Confidence” category captured 32.3%
of patients, with an accuracy of 90.1% and the “Medium
Confidence” category captured 46.6% of patients with an
average accuracy of 80.9%. 20.5% of patients fell into the
“Low Confidence” category with an accuracy of 59.7%. If
we eliminate all “Low Confidence” predictions (20.5% or 99
patients) from the system we are able to achieve an accuracy
of 84.8%, accounting for 384 of the original 483 patients
(79.5%). This demonstrates our approach’s ability to stratify
the subjects into confidence categories that improve the overall
accuracy of the prediction.

IV. CONCLUSION & FUTURE WORK

We have demonstrated a flexible, multi-agent approach to
binary classification problems, applying our system based
on wisdom-of-crowds and swarm intelligence to a data set
of breast-cancer positive patients, predicting node-positive or
node-negative disease with a combined accuracy of 84.8% for
the “Very High”, “High”, and “Medium” confidence intervals,
capturing 79.5% of patients. The honey-bee-inspired aggrega-
tion mechanism has improved the accuracy, specificity, and
sensitivity of our system over existing aggregation methods,
as well as reducing the prediction variance.

As with any classification or learning system, we expect
better performance with more training data. We intend to work
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Fig. 1. 5-fold validation results for predicting lymph node metastasis status from the clinical features listed in Table I. Weighted Voter Model (left) vs. Swarm
Aggregation (right)

with other breast-cancer positive data sets to explore both
performance increases with more data, as well as to validate
the system against other data sets. Additional data will also
allow us to further explore the confidence interval sub-system
with the goal of making the “Very High Confidence” category
more inclusive without sacrificing much, if any, accuracy.
Further, we would like to apply this method to a data set
of pre-surgical features, relying on information available at
time of biopsy in order to help guide pre-surgical decision
making. Previous work using an agent-based system has shown
this approach is resistant to feature dropout. We aim to do
further testing using the breast cancer data set presented here
to confirm the prior results as we remove protein expression
data such as P53 or Her2, since they may not typically be
collected.
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