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Abstract

WoC-Bots: Swarms of Biologically Inspired Prediction Agents

Sean P. Grimes
Advisor: David E. Breen

This dissertation presentsWisdom–of–Crowds–Bots (WoC-Bots), biologically–inspired, simple, andmod-

ular agentswhichwork together in amulti–agent environment to collectivelymakebinarypredictions. Build-

ingon the theoretical underpinningsofWisdomofCrowds,WoC-Bots represent a knowledge–diverse crowd

where each agent is trained on a subset of available information. A honeybee–derived swarm aggregation

mechanism was developed to elicit a collective prediction with an associated confidence score. Due to the

multi–agent architecture, WoC-Bots can be distributed across multiple compute nodes, reducing training

and inference time. Importantly, this architecture demonstrates significant key advantages over traditional

classification methods while maintaining comparable predictive performance. Specifically, new and previ-

ously unknown input features can be included in an existing classification problem without retraining ex-

isting agents. New input features, combined with existing features, are encapsulated into newly generated

agents before agents are injected into an existing classification task. Further development led to a “meta–

swarm”, where an external prediction is used as the core belief of an agent, replacing a simple multi–layer

perceptron network. The external prediction requires zero knowledge of source data, maintaining the local-

ization and privacy of the data used to generate the prediction, enabling collaboration between institutions

unable to share their data externally.
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Chapter 1. Introduction

Predicting the likely outcome of future events is an important classification task for many different fields.

Diseaseoutbreak and risk factors, business success, economics, andmanyother applications canbenefit from

better, more flexible, forecasting. Healthcare professionals are aided by these algorithms, improving patient

outcomes [2, 67], while Hollywood production studios direct advertising and marketing budgets based on

the outputs of these complex algorithms [27]. Significantwork has beendone in this area, including artificial

neural networks (ANNs) [66, 60, 90], support vector machines (SVMs) [78, 22], logistic regression [127,

30] and decision tree–based methods Random forest [19], XGBoost [23], and AdaBoost [100], among

other algorithms. While all of these algorithms can perform well on their own [62, 106, 47], as with all

algorithms, they do have limitations.

Logistic regression requires all observations to be independent and can be extremely sensitive to the in-

put data, easily over–fitting on training data with few samples and a large number of features [89]. SVMs

performpoorly in noisy environments, requiring significant data cleaning andpreparation, and strugglewith

large datasets as training time grows very quickly [5]. Ensemble methods, including AdaBoost, XGBoost,

and Random forest are computationally complex and cannot expand the number of input feature without

retrainingweak learners [39]. Similarly, deep neural networks (DNNs) cannot expand the number of inputs

once trained and typically have long training times, which reduce their ability to adapt to changes in input

features or availability of new input features [136]. Additionally, DNNs require vast amounts of input data

to effectively determine relationships between inputs and outputs [108]. An alternative method in develop-

ment atHP-Enterprise¹ uses swarm intelligence, decentralized and independent learners, before aggregating

anonymous “learnings” [3, 75]. While this is similar to federated learning, where data privacy is protected

by sending anonymized “learnings”, i.e. not the original data, to a centralizedmodel and averaging the inputs

[65, 92], it fundamentally differs by replacing a central server, distributing learnings to all edge devices using

blockchain technology to track updates to the known model, allowing each peer in the network to act as an

equal [46].

The swarm intelligence–basedmethod developed byHP-Enterprise hasmany attractive qualities, similar

to federated learning; edge nodes, which could be individual hospitals, doctor’s offices, or other research

¹https://www.hpe.com/us/en/hpe-swarm-learning.html

https://www.hpe.com/us/en/hpe-swarm-learning.html
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institutions, canworkwith and train learningmodels without sharing private patient informationwith other

institutions, while still updating a known model between all participating institutions. Additionally, in the

HP-Enterprise system, as each edge node is working with a subset of overall data, there is no need for large,

centralized, and expensive compute hardware [83]. However, this method requires consistency for all mod-

els at the edge nodes, with the same input features used to train each of the models. The participating in-

stitutions need to work with, for example, a deep neural network using the same input features; therefore it

is not possible for one institution to use Random forest, another to use deep learning, and another to use

AdaBoost [97]. The motivation of this dissertation is to develop a classification algorithm that builds on ex-

isting methods to offer new and improved functionality that enables distributed learning and classification

while allowing for many different types of learners to be included and aggregated in order to drive an overall

classification from the complete set of available inputs.

Figure 1.1: Schooling fish avoiding a predator from the International Journal of Advanced Robotic
Systems [116] (left) and birds flocking while migrating and foraging from The Smithsonian [36] (right).

This dissertation presents a biologically–inspired, multi–agent architecture for binary classification prob-

lems using swarm intelligence to aggregate decentralized predictions from multiple sources. Swarm intelli-

gence is common throughout the animal kingdom, allowing relatively simple animals to collectively perform

complex tasks and movements through emergent behavior [84]. Figure 1.1 shows fish schooling together,

avoiding a predator (left) and birds flocking together while foraging (right). The algorithms and methods

presented throughout this document demonstrate significant key advantages over traditional monolithic

neural network architectures while maintaining comparable performance in terms of accuracy, precision,

and recall. Specifically, this work allows for new, previously unknown features to be incorporated into a

prediction problem without retraining the existing set of agents by encapsulating additional features into

newly generated agents, saving significant training time as new information becomes available. The multi–
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agent design, naturally, allows for distribution across multiple compute nodes, decreasing both training and

inference time when additional hardware is available. Work towards both the incremental feature addition

and distribution steps led to the development of a “meta-swarm”, where distributed information sources and

predictions can be encapsulated as agents, collaborating in the classification problem while maintaining the

localization and privacy of the source data used while making the initial predictions.

The work presented in this dissertation allows for individual predictions to be incorporated without re-

vealing the (potentially) private data used to make those predictions. Each agent in this method is a small,

simple agent built around a core belief; typically the core belief comes from a simple and shallowmulti–layer

perceptron (MLP) network. However, the belief can also be derived from an external prediction source,

forming the basis for the initial prediction for that agent, without revealing any information about how that

prediction was formed. Incorporating information and predictions privately from distributed sources is vi-

tal to progress within the healthcare industry where there are significant restrictions for information sharing

due to patient privacy concerns [15].

The social and aggregation aspects of thiswork are built around theories fromWisdom-of-Crowds (WoC)

which, fundamentally, state that a diverse crowd of non–expert agents (human, computer, or otherwise)

can produce predictive results with small predictive error using a sufficiently competent aggregation mech-

anism [82]. A computer implementation of a honeybee–derived swarm aggregation algorithm is used as

a sufficiently competent aggregation mechanism, not only giving a prediction, but also an associated confi-

dence score for the prediction, derived from how quickly the swarm converges on an answer. Results for

this method are discussed in detail and compared with more traditional classification methods throughout

this document, typically showing similar performance against the existing “state-of-the-art”. Additionally,

the meta-swarm approach is demonstrated using a real world problem, showing consistent return on invest-

ment (ROI) in sports betting over a 20–month period investigating multiple major sports.

Chapter 3 presents a modular multi–agent architecture and environment used to create and train agents,

and interact socially;This chapter presents work using this multi–agent architecture, comparing results with

traditional classification methods, and demonstrating a custom–designed aggregation mechanism which

builds upon a weighted vote method using trust and prior performance. Chapter 4 demonstrates a nature–

based aggregationmechanism, based on swarm intelligence, specifically a honeybee optimization algorithm.

Figure 1.2 demonstrates the basic steps of a single bee performing a waggle dance. The waggle dance will

advertise to other scout bees the direction, relative to the sun, and the distance of the food source, and im-
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Figure 1.2: Simplified waggle dance process from the Harvey Mudd College Bee Lab [61]. Steps 1
and 3 demonstrate the bee dancing, while steps 2 and 4 demonstrate the bee returning to the starting
point

portantly for this work, the quality of the food source. The longer a bee dances, the more bees are recruited

to exploit the food source. Similarly, in the computer version presented in this work, agents with stronger

prediction beliefs and a history of correct predictions are more likely to recruit additional agents to their

prediction. This algorithm improves the predictive performance and improves the stability of the complex

system compared with simpler weighted vote and unweighted vote mechanisms. Chapter 5 discusses incre-

mental feature addition and presents results using patient data fromChapter 4 and new cellularmorphology

features, improving classification performance. I show how the three main components of this method, the

initial training, the social interaction, and the swarm aggregation mechanism, can be distributed across mul-

tiple hardware nodes in Chapter 6, demonstrating run time performance improvements and presenting the

initial development of the meta–swarm method. Chapter 7 presents accuracy, precision, and recall compar-

isons with the WoC-Bots method, meta–swarm, and other state–of–the–art classification methods. Real

world results from applying this research to sports betting predictions over a 20–month period are also pre-

sented.
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1.1 ScientificMerit

The specific contributions of this research are the following:

• A modular, multi–agent–based architecture for binary classification problems,

• An algorithm that allows for incomplete data with minimal predictive performance degradation,

• Aclassification algorithmwhich canbe incrementally updatedwithnew, previously unknown features

without retraining already trained components,

• A classification system which can be distributed across multiple compute nodes to decrease training

and inference time,

• Analgorithmthat can incorporatepredictions fromdistributed sources–other classificationmethods,

or direct predictions – using ameta–swarm, without compromising the privacy of the original source

data.

This dissertation is structured as follows. Chapter 2 presents a chemotaxis–inspired architecture for self–

organizing shape formation, based on living cells which emit chemicals into their environment, which are de-

tected byneighboring cells that respond to the chemical concentration bymoving along a gradient as needed

for complex shape formation [11, 9]. Each agent is simple, and through the use of local–only interactions

can be directed to produce a macroscopic, global behavior. An issue with this type of design is determining

the correct local interactions without global control. One method used to overcome this limitation in the

subsequent work presented in this dissertation is social interaction, a way of disseminating global informa-

tion with local–only interactions. This work was the impetus to my interest in decentralized, multi–agent

architectures and the primary driver behind the swarm–based aggregationmechanism described inChapter

4.

Chapter 3 introduces the multi–agent architecture and interaction environment. The environment is de-

signed to bemodular and flexible, with all aspects of behavior designed as modular algorithms which can be

‘plugged in’ and modified as necessary. Data is distributed to each agent, which is used to train the agent’s

internal MLP classifier. Once MLP training is complete, a social interaction arena is generated and each

agent is initialized into the the arena based on an initialization algorithm. Moving agents within the arena

can be biased to promotemore frequent interaction, information dispersal, and prediction formation, which
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prepares agents for the opinion aggregation process. All aspects of behavior are enabled through modular

algorithms which allow for extensive flexibility and behavioral augmentation to fit specific needs or experi-

mentation. Results using the initial configuration of this architecture are described and presented, showing

a robust classification method despite using a dataset with significant missing data.

Chapter 4 presents results classifying breast cancer patients as either node–negative or node–positive,

that is, classifying the presence of cancer in the surrounding lymph tissue. Agents with missing data do not

participate, but the interaction and swarm steps can continue with the remaining agents. The swarm–based

aggregation mechanism presented in this chapter further reduces predictive variance and improves overall

stability.

Chapter 5 demonstrates the ability to introduce new features to an existing classification problemwithout

retraining existing agents, a time and computation intensive operation. The variable number of participating

agents naturally allows for additional agents to participate, which enables feature addition. New features

are included in the classification tasks after the initial training is complete by generating new agents with a

combination of new and existing features, and injecting the newly generated agents during the interaction

and opinion aggregation phases, leading to improved classification performance during experimentation.

Chapter 6 presents work on distributing the three phases of this method, the initial training, the social

interaction, and the swarming phases, across multiple compute nodes. Work has been completed on all

three phases. Within this chapter I present the meta–swarm, originally developed as a method to reduce

the computational requirements when distributing the swarm phase. This method is described in detail,

including results on runtime and classification performance. Experimental results show an overall speedup

with a sufficiently large input, and most datasets show good predictive performance when using the meta–

swarm method for swarm aggregation.

Chapter 7 containsdetailed comparison results, investigating the classificationperformanceof themethod

described in this dissertation and comparing it with ‘state–of–the–art’ methods including XGBoost [23],

AdaBoost [100], Random forest [19], Logistic Regression [127], and a deep neural network (DNN) imple-

mented in DeepLearning4J (DL4J). These methods were selected for comparison based on their state–of–

the–art status and because they are commonly used in binary classification tasks [134]. All methods were

tested on three datasets, theHollywood data described in chapter 3, the breast cancer data described in chap-

ter 4 and an additional dataset predicting airline passenger satisfaction, described in chapter 7. Included in

the comparison results is an additional use of the meta-swarm, using predictions from WoC-Bots and the
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other classification methods to improve the variance between accuracy, precision, and recall. Also included

in this chapter are real world results from applying this method to sports betting from January 2021 through

November 2022, across most major sports, focusing on moneyline and spread bets.
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Chapter 2. Chemotaxis-based self-organization

The work presented throughout this dissertation is largely based in biological behavior, at the cellular,

insect, and human level. This chapter presents work based on the cellular level, an agent–based approach for

self–organizing shape formationwhich is inspiredby the chemotaxis of living cells. Cells emit chemicals into

the environment and are capable of detecting and responding to the overall chemical concentration within

the environment. As with cells, the agents presented here are simple and use local-only interaction to direct

complex, macroscopic behavior.

2.1 Introduction

Motivatedby the ability of cells to form into specific shapes and structures, in previousworkwedeveloped

chemotaxis-inspired software agents for self-organizing shape formation [11, 9]. The actions of the agents,

which we call Morphogenetic Primitives (MPs), are based on the behaviors exhibited by living cells. Cells

emit chemicals into the environment. Neighboring cells detect the overall chemical concentration at their

surfaces and respond to the chemical stimulus bymoving along the chemical field’s gradients [33]. Similarly,

in our system the agents emit a virtual chemical, with its concentration defined by an explicit mathematical

expression. A set of agents start with an initial random configuration and stochastically follow the gradient

of the cumulative concentration field. These chemotaxis-based local interactions direct the agents to self-

organize into user-specified shapes (Figure 2.1). Since the behaviors of MPs are based on local information

and interactions, they could provide a distributed, scalable approach for controlling the movements of a

robotic swarm.

In some cases, we have observed though that the agents do not spatially self-organize into a unique shape,

but instead form two or more stable final configurations. If MPs are used to control the motions of individ-

Figure 2.1: Morphogenetic Primitives self-organizing into a star shape. Initially published in [9].
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ual robots, it would be extremely useful to direct the outcome of these bifurcating spatial self-organization

processes towards a consistent outcome. This would allow us to guarantee that all of our MP aggregations

produce a single, desired shape. This is a property that is essential for robust and predictable swarm control

algorithms, one that would make the algorithm reliable for engineering applications. Towards this end, we

have analyzed whole swarm populations at a global level in search of macroscopic, distinguishing attributes.

This analysis identified features, based on statistical moments of the agents’ positions, that have significantly

different values for different outcomes of a swarmaggregation. In earlierworkwediscovered that these statis-

ticalmoments can be used to accurately predict the outcomeof the self-organization process at an early stage

of the shape aggregation [12]. Given these differentiating moments, the work described here investigated

techniques for directing the outcome of our self-organizing system via biased, random initial conditions in

order to consistently produce a desired final configuration.

Through our study of the dynamics of a swarm’s statistical moments during the aggregation process we

noted the connection between initial conditions and the final shape configuration of the swarm. We dis-

covered that biased, random initial conditions that meet specified constraints, i.e. have well-defined statis-

tical properties, robustly yield simulations with a unique final outcome. For those agent interactions that

ultimately produce bifurcating/multiple shapes, we have identified for each shape, the most distinguishing

macroscopic statistical moment of the evolving swarm. It is possible to generate random distributions of

MPs that have specific statistical moments. Our work empirically shows that for bifurcating self-organizing,

non-linear, dynamical systems (e.g. a swarm of Morphogenetic Primitives) one final outcome can be con-

sistently generated by enforcing a constraint on the value of a single moment when generating the swarm’s

initial conditions. Given this feature of our system, we are able to control the final outcome of the simula-

tion by simply thresholding the value of a statistical moment for a particular starting distribution, i.e., we

constrain the random initial conditions to have specific statistical properties.

2.2 RelatedWork

Research on distributed agent-based systems that can form spatial patterns and shapes, as well as swarm

behaviors, has been conducted for several decades. Reynolds [91] proposed the seminal model for simu-

lating flocking and schooling behaviors based on the local interactions of “boids”. Fleischer and Barr [38,

37] explored a cell–based developmental model for self–organizing geometric structures. Theraulaz and

Bonabeau [113, 114] presented amodeling approach based on the swarming behavior of social insects. They
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combined swarm techniques with 3D cellular automata to create autonomous agents that indirectly interact

in order to create complex 3D structures. Viscek et al. [121] investigated a particle-based model related

to the Reynolds model and found that macroscopic phase changes occurred in the particle system when

introducing noise in the local interactions. Jadbabaie et al. [54] further explored the Vicsek model and pro-

vided a theoretical explanation for the model’s observed behavior, as well as convergence results for classes

of switching signals and arbitrary initial heading vectors.

The initial work in this area of research created distributed, locally-interacting agent-based systems, then

observed and characterized their behaviors. Later work explored techniques for directing these distributed,

self-organizing systems. EggenbergerHotz [32, 51]proposed theuseof genetic regulatorynetworks coupled

with developmental processes for use in artificial evolution and was able to evolve simple shapes. Bonabeau

et al. [21] applied genetic algorithms to the stigmergic swarm-based 3D construction method of Theraulaz

and Bonabeau in order to evolve interactions that produce user-acceptable structures. Nagpal et al. [73, 74]

presented techniques to achieve programmable self-assembly. Cells are identically-programmedunitswhich

are randomly distributed and communicate with each other within a local area. In this approach, global-to-

local compilation is used to generate the program executed by each cell, which has specialized initial parame-

ters. Stoy and Nagpal [107] presented an approach to self-reconfiguration based on directed growth, where

the desired configuration (which is stored in eachmodule) is grown from an initial seedmodule. Sparemod-

ulesmove along recruitment gradients emanating fromattachedmodules to create the final shape. Gradients

derived from global potential fields have also been investigated for directing robot swarms. Both Rimon and

Koditschek [93] and Hsieh and Kumar [52] demonstrated that robot paths and controls can be computed

from these fields, which lead the robots to form a pre-defined shape.

Shen et al. [103] proposed a Digital Hormone Model for directing robot swarms to perform such tasks

as surrounding a target, covering an area and bypassing barriers. The model relies on local communications

between identical agents, but it also has each agent move towards a single global target. Swarm chemistry,

proposed by Sayama [99, 98] and based on Reynolds’ model, is an approach for designing spatio-temporal

patterns for kinetically interacting, heterogeneous agents. An interactive evolutionary method, similar to

Sims’ [104], has been used to define system parameters that lead to agent segregation and structure forma-

tion. Mamei et al. [71] proposed a distributed algorithm for robots that are attracted to and aggregate around

targets sensed over short distances. By electing leader(s) as barycenter(s), propagating gradients of varying

structure and using these gradients as instruction conditionals, a swarm of simulated robots are able to self-
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organize into a number of simple shapes such as a circle, ring, and lobes. VonMammen andChristian [123]

described swarm grammars, an agent-based extension of Lindenmayer systems, that are capable of adapting

to their environment and evolve agent parameters in order to create structures that incorporate aspects of

developmental design and morphogenesis. The field of Guided Self-Organization (GSO) [88] has devel-

oped techniques for steering self-organizing systems towards desired outcomes, while still attempting to not

constrain the system’s configuration space during its evolution.

Doursat [29, 28] proposed a model for artificial development which combines proliferation, differentia-

tion, self-assembly, pattern formation and genetic regulation. Via genetic-like regulation at the agent level,

the agents can self-organize into a number of patterned shapes and structures. Werfel et al. [124] proposed a

decentralized multi-agent system approach, inspired by mound-building termites, for building user-defined

structures. A user specifies a desired structure, and the system automatically generates low-level rules for

independent climbing robots that guarantee production of the structure. A single “seed” brick is used as a

landmark to identify where the structure is going to be built, and defines the origin of a shared coordinate

system for the robots. Gerling andVonMammen [41] provided a context for this type of work in a summary

of self-organized approaches to construction.

Our previous and latest work on agent-based shape formation stands apart from related work in that it

utilizes a chemotaxis-based interaction paradigm inspired by the behaviors of living cells which leads to the

formation of tissues. Given the goal of recreating the properties of cells, MPs were designed with principles

that should make them scalable and robust [9]. These design principles defineMPs as identical, distributed

agents that are not directed by a ’master designer’, exchange information locally, carry no representation of

the shape to be formed, and have no information about their global location. The macroscopic shape of the

swarm emerges from the aggregation of local interactions and behaviors. Our approach is therefore novel

compared to previous work in that it contains all of the following features. 1) All morphogenetic primitives

are randomly placed in the environment, are identical, and perform the same simple actions, unlike Nag-

pal et al. [73, 74]), Mamei et al. [71], and Doursat [29, 28]. They require no differentiated behaviors or

customized initialized states. 2) No initialization of spatial information is needed in the computational en-

vironment, unlike Stoy and Nagpal [107], Shen et al. [103], and Werfel et al. [124]. 3) Individual MPs do

not know their location in any external/global coordinate system, unlike Stoy and Nagpal [107], and [124].

4)MPs do not contain or utilize a representation of the predefined global shape that is being composed, un-

like Stoy and Nagpal [107], Rimon and Koditschek [93], and Hsieh and Kumar [52]. 5) We utilize genetic
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programming to discover theMP concentration field functions that lead to the formation of a user-specified

shape. Chemotaxis then provides a straightforward mechanism for determining the motion of MPs, in con-

trast to the difficult-to-program approaches of Shen et al. [103] and Sayama [99, 98]. Note that our new

work described here enhances our previously developed system [9] to make MPs more robust, consistent

and reliable.

2.3 BackgroundMaterial

2.3.1 Agent-based Shape Formation

Like Pfeifer et al. [87]we turn to biology and self-organization for insights into the design of autonomous

robots, robotic swarms in our case. Our previous work in self-organizing shape formation [9, 13] is inspired

by developmental biology [42] and morphogenesis [25], and builds upon a chemotaxis-based cell aggrega-

tion simulation system [35]. Morphogenesis is the process that forms the shape or structure of an organism

through cell shape change, movement, attachment, growth and death. We have explored chemotaxis as a

paradigm for agent system control because the motions induced by chemotaxis (one of the mechanisms of

morphogenesis) may produce patterns, structures or sorting of cells [102].

Morphogenetic Primitives are initially placed inside a 2D environment with a random uniform distribu-

tion. Each MP is represented by a small disc and emits a ‘chemical’ into the environment within a fixed

distance relative to its own local coordinate system. Every MP emits the identical local chemical field. An

MP detects the cumulative chemical field at eight receptors on its surface, and calculates the field gradient

from this input. MPs move in the direction of the field gradient with a speed proportional to the magni-

tude of the gradient. By employing these relatively simple chemotaxis-inspired behaviors MPs are able to

self-organize into user-specified macroscopic shapes.

This process is schematically presented in the bottom 2/3 of Figure 2.2. In the middle left of the figure, a

close-up of an MP is provided showing its eight chemical sensors and the range of the finite chemical field

that it emits. Numerous MPs are randomly placed in the computational arena, and are provided as initial

conditions to a chemotaxis-based cell aggregation simulator. The simulator then computes an aggregation

simulation based on the one chemical field that is associated with allMPs. The self-organization of the agent

swarm is shown in themiddle right of the figure. The bottom flowchart of the figure outlines the steps taken

by the cell simulator for each cell. The bottom left image shows a representativeMP chemical field, with the

chemical concentration visualized with gray-scale colors. Isolines are added to highlight the structure of the
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chemical field. The image to its right shows a cumulative chemical field given the contributions of all of the

MPs in the arena. The top part of the figure will be explained later in the chapter.
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Figure 2.2: Schematic diagram of the directed self-organization process based on specifying biased
initial conditions for Morphogenetic Primitives.

WhileMPs’ fundamental interactions are based on a chemotaxis-inspired paradigm, we do not limit their

behaviors/properties tobephysically realistic or completely consistentwithbiology. Instead, developmental

biology provides a motivating starting point forMPs. As a way to customize chemotaxis-inspired agents for
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Figure 2.3: The genetic programming process that produces the local chemical field functions of the
shape primitives. Initially published in [11].

shape formation, we alter the chemical concentration fields around individual cells. Instead of the chemical

concentration dropping off only as an inverse function of distance d from the cell’s surface (e.g. 1/d), in our

systemwe define the concentration fieldwith an explicit function of d and θ, the angular location in the cell’s

local coordinate system.

Currently, there is no prescriptive way to specify a particular local field function that will direct MPs to

form a specific macroscopic shape, we therefore employ genetic programming [59] to produce the mathe-

matical expression that explicitly specifies the field function. In order tomeet the substantial computational

requirement imposed by our evolutionary computing approach, we have implemented a master-slave form

of the distributed genetic programming process [11]. The fitness measure associated with each individual

field function is based on the shape that emerges from the chemical-field-driven aggregation simulation, and

determines which functions will be passed along to later generations. The genetic process stops once an in-

dividual (i.e., a mathematical expression) in the population produces the desired shape via a chemotaxis

simulation, or after a certain number of generations have been produced and evaluated. Figure 2.3 illustrates

this approach. See [11], [9] and [8] formore details onMPs and the software system that implements them.

With this algorithm, we have successfully evolved local MP chemical field functions for a number of sim-

ple shapes [9]. These results support the proposition that biological phenomena offer paradigms for design-

ing cellular primitives for self-organizing shape formation. While the resulting explicit chemical fields are
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not biologically/chemically plausible, they do provide an approach for controlling robot swarms that com-

municate wirelessly over short distances and share minimal information with each other. Thus the agents in

the swarm do not require significant compute power to self-organize. Additionally, evolutionary computing

techniques, specifically genetic programming, have been crucial for discovering the detailed local interac-

tions that lead to the emergence of the swarm’s macroscopic structure.

However, given the MPs’ initial random configurations and the stochastic nature of the self-organization

process, the outcomes of the simulations with a specific field function are not always the same. We have

found that the shape formation simulations, which include random displacements of the MPs and noise in

their movements, can generate bifurcating results. For some field functions, if we run numerous simulations

each starting with a different random uniform distribution of MPs, two sets of final configurations will be

formed. In most cases an equal number of each configuration are produced, but in a few cases the ratio of

the numbers is not one. Since it would be useful to control the outcomes of the self-organization process,

we have developed methods for directing the final configuration of a bifurcating simulation by starting the

simulation with biased initial conditions [7].

2.3.2 Outcome Prediction

The first step towards developing methods that direct the outcome of a swarm simulation involved iden-

tifying spatial features that are correlated with and can differentiate the final, different swarm configurations.

Our initial effort towards achieving this goal investigated methods for predicting the final configuration of

a bifurcating simulation at an early stage of the aggregation process. Our reasoning was that if certain spa-

tial features can be used to predict the outcome of an aggregation, then they represent unique attributes of

the swarm that could be manipulated to direct the swarm. In order to predict the final outcome of a self-

organizing shape formation simulation, we first extracted features that capture the spatial distribution of the

MPs. Moments provide a quantitative way to describe a distribution. Since MPs are defined as small discs,

we use the center of each disc to represent each MP’s location. We therefore can simplify the collection

of MP locations as a set of 2D points, and apply moment analysis to this set over the duration of the MP

simulation.

We calculated the mean (first moment), variance (second central moment), skewness (third central mo-

ment) and kurtosis (fourth central moment) from the x and y coordinates of the MP centers. We analyzed

the locations Xi of all points (MPs) as a whole, rather than tracking the location and movement of each in-
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dividual point. The population size of the agents is denoted as n, (n = 500), and the formulas of the four

momentsM1 toM4 are given in Equations 2.1 to 2.4,

M1 =
1
n

n∑
i=1

Xi, (2.1)

M2 =
1
n

n∑
i=1

(Xi −M1)
2, (2.2)

M3 = [
1
n

n∑
i=1

(Xi −M1)
3]/(M2)

3/2, (2.3)

M4 = [
1
n

n∑
i=1

(Xi −M1)
4]/(M2)

2. (2.4)

These statistical moments provide quantitative information about the shape of histograms/distributions.

When computed for the x and y coordinates of theMPs, thesemoments capture the asymmetry and shape of

the spatial distribution of the whole population. We have not found it necessary to compute crossmoments,

with the first four moments providing sufficient information for our analysis. Since the x and y coordinates

of the points change over time, so do the four moments of the distribution of the x and y values. The change

of themoments as a function of simulation time also provides insight into the dynamic nature of a particular

MP simulation.

At each simulation time t, the four momentsMi(t) (i = 1 to 4) of the overall distribution are calculated

and we then approximate the time derivative of the moments as the slope of a linear interpolating function

of consecutive moment values. By calculating the moments and their time derivatives for both the x and y

coordinates of the point set, at a given time t, we obtain a 16-dimensional vector to represent the distribution,

Mx1(t),My1(t),Mx2(t),My2(t),Mx3(t),My3(t),Mx4(t),My4(t), kx1(t), ky1(t),

kx2(t), ky2(t), kx3(t), ky3(t), kx4(t), ky4(t).

Given the sensitivity of non-linear dynamical systems to initial conditions [125], it makes it extremely

difficult, if not impossible, to predict the outcome of our complex, self-organizing system from its initial,

random spatial configuration. We therefore attempted to predict the final spatial configuration at an early

stage of the aggregation, usually before it is visually evident what shape will emerge from the process. We

considered prediction of the bifurcating outcomes as a classification problem and utilized support vector

machines (SVMs) [24] to solve it. We have found that applying SVMs to the distribution feature vector at
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a simulation time that is a small percentage of the total time needed for the final aggregated shape to form

produced acceptable results. Given 200 MP simulations for a variety of bifurcating self-organizing shapes

we found that we could predict the outcome of the aggregation at a time point 5% to 10% into the simulation

with an accuracy of 81% to 91%. We view these results as satisfactory because they demonstrate that a strong

correlation between a swarm’s moments and its final formed shape does exist. More details about this study

may be found in [7] and [12].

2.4 Directing Spatial Self-Organization

Since the outcome of an MP simulation can be predicted at an early stage of aggregation using the mo-

ments of the agents’ positions, we then explored methods for controlling the swarm via manipulating the

moments of the swarm’s initial configuration. The general strategy is to create random initial configurations

for the MP simulations, but with constrained, biased moments. We have observed that this strategy can

consistently direct the swarm to aggregate into specific final configurations [45]. The first step of the strat-

egy analyzes the bifurcating simulations to determine which of the moments diverge the most for the two

different outcomes. This is the moment that will be biased in the swarm’s initial, random configuration.

2.4.1 Moment Analysis

One of our aggregations, which produces what we call the quarter-moon shape, provides an example of

the moment analysis. Of the 200 simulations starting with a uniform random, unbiased initial condition,

100 produce left-pointing structures and 100 produce right-pointing structures. Figure 2.5 shows a typical

swarm aggregation for this shape. The four moments of both x and y coordinates are calculated over all

35,000 simulation steps. Additionally the mean and standard deviation of each statistical moment are calcu-

lated for the two categories, i.e. left-pointing and right-pointing, over the simulation time steps. Plotting the

mean and the mean ± standard deviation of the moments over time immediately highlights the moments

which are the most differentiating and may be used to identify specific shapes. For the quarter-moon ex-

ample the third xmoment (skewness) is the one with the greatest separation of values for the two possible

outcomes, as seen in Figure 2.6. The solid and dashed lines are themean of the skewness of the x coordinate

for the two outcomes. The dotted and dot-dashed lines are mean± standard deviation. The dashed curve

is produced from structures that are right-pointing and follow the path in the top of Figure 2.5. The solid

curve is produced from the left-pointing structures, with a typical aggregation presented at the bottom of
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Figure 2.5.

By analyzing the time series in Figure 2.6, we see that the skewness of the x coordinates of the two classes

starts at about the same value, approximately−0.05 to 0.05, at time step 0. The values should be near zero,

since all simulations begin with uniform random configurations. The skewness of the two classes first sep-

arates by increasing or decreasing, followed by a zero crossing and then a reversed trend appears until they

reach their final states at step 35,000. Observing the values for the solid anddashed curves over all simulation

time steps, we can identify three regions in the plot: a region occupied by solid/dotted curves only, a region

occupied by dashed/dot-dashed curves only and an overlapping region. To be specific, considering the val-

ues of x skewness in Figure 2.6 (by projecting the curves into the y axis), the range of [−0.195,−0.150]

is covered by solid/dotted curves only; [0.150, 0.190] is covered by dashed/dot-dashed curves only and

[−0.150, 0.150] is covered by both outcomes.

When determining the appropriate threshold value for a constrained moment, we start with the mean

value of the non-overlappingmoment range for a particular shape, and then adjust if needed. For the region

covered only by the quarter-moon’s dashed/dot-dashed curves (for right-pointing shapes) the mean value

of skewness is 0.170. While using this value for the moment constraint produced reasonable results (94%

of the biased initial conditions produced the desired shape), we found, via multiple experimental runs, that

the threshold value on the skewness had to be increased to produce a consistent result. In general this was

the process employed for determining the moment constraint thresholds needed to generate the desired

outcomes.

2.4.2 Generating Constrained BiasedDistributions

Once the most significant distinguishing moment (the one with the greatest value difference in the final

configuration) for a shape is identified, the information is utilized to direct the shape aggregation by impos-

ing constraints on this moment in the initial conditions. We assume that the MPs’ x and y coordinates are

independent, and therefore create two probability density functions, each representing the x and y coordi-

nate. One probability density function is created for the constrained coordinate and the other coordinate

is considered to be uniformly random. Samples are drawn independently from the two distributions to pro-

duce a single (x, y) location.

This approach generates random distributions, i.e. 2D random initial configurations for the shape simula-

tion, thatmeet a constraint on a particularmoment in the x or y coordinate. We have found that constraining
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one of the eight moments (mean, variance, skewness and kurtosis for x and y) is sufficient for producing sat-

isfactory results. Constraining multiple moments does not significantly improve the outcomes, and would

further complicate the process of generating initial conditions. Once one significant moment of a distribu-

tion and its threshold value have been identified, the remaining three moments for that spatial coordinate

(x or y) may be set to values observed in uniform random distributions. These values aremean = 500 (the

center of our computational arena), variance = 15, 000, skewness = 0 (to make the distribution symmet-

ric), and kurtosis = 2. Once the four moments for one of the coordinates have been specified, a probability

density function (PDF) with those moments is defined. The values for the other coordinate are generated

from a uniform random distribution.

For the constrained dimension we create a Gram-Charlier expansion of the normal distribution (chosen

for its convergence properties) with specified moments [101]. This Gaussian-expanded probability density

function is then discretizedwith 100,000 samples with values falling within the range of 0 to 1000 (the range

of the computational arena). Slice sampling [77], aMarkov chain samplingmethod chosen for its efficiency,

is then utilized to draw 500 samples from this discretized distribution. Theoretically, the specified PDF can

be sampled to produce a distribution that has the samemoments as the PDF.Our experience has shown that

the sample size needs to be quite large (on the order of 1 million) for this to be true. For our sample size of

500 (the number of MPs in an aggregation simulation) and heavily biased PDFs, the resulting moments of

the finite sample set do not necessarily match the ones desired for a particular shape.

As the distribution generation process cannot guarantee that a sampled distribution will meet the re-

quiredmoment constraints, the fourmoments of the generated distributions for the constrained coordinate

are computed to determine if the constraint is actually met. If the value of the significant moment is not

above or below (depending on the constraint to be enforced) the specified threshold, the sampled distribu-

tion is rejected. If the constraint is met, the distribution is accepted as the initial conditions for a simulation

computation.

Since our agents are not points, but in fact are discs with a fixed radius, we maintain a distance of 2R

(where R is the radius of a disc) between sample points, to ensure that the MPs do not overlap. Therefore,

if an (x, y) pair is generated that is less than 2R distance to a previously generated location, it is rejected

and another (x, y) pair is calculated. This process continues until a sufficient number of MP locations are

generated for the initial conditions.

We have found that it is more computationally efficient to generate numerous smaller sample sets and



20

Bai and Breen Directing Chemotaxis-Based Self-Organization

(a) (b) (c) (d)
Figure 11. (top row) Biased initial conditions ((a) x skewness = -0.268, (b) y kurtosis = 2.150, (c)
x variance = 9,596, (d) x kurtosis = 1.88) that robustly evolve (bottom row) into (a) a right-facing
quarter-moon, (b) a single ellipse, (c) three discs and (d) two line segments.
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Figure 2.4: (top row) Biased initial conditions ((a) x skewness = -0.315, (b) y kurtosis = 2.150, (c)
x variance = 9,596, (d) x kurtosis = 1.88) that robustly evolve (bottom row) into (a) a right-pointing
quarter-moon, (b) a single ellipse, (c) three discs and (d) two line segments.

then merge them into a single point set, rather than attempt to compute a single, large point sample, when

composing biased initial conditions for our aggregation simulations. We apply this approach by drawing 50

subsets,Tk=1,...,50 of 10 samples, rather than 1 set of 500 samples. Each sample drawn is checked for overlap

with existing samples, discarded if overlap exists, and otherwise added to the current Tk. Once each Tk has

10 samples, it is checked for conformance to the moment restrictions prior to insertion into the final set,

S, of 500 samples. If a given Tk fails, a new Tk is drawn. An acceptable Tk is merged with S, which is then

checked for conformance to themoment restrictions. If the updated S does not pass, it is reverted to its prior

state, S− Tk, and a new Tk is drawn. This process continues until |S| = 500. The algorithm for generating

biased initial condition, once the initial sampling does not meet the moment requirements, is diagrammed

in the flowchart at the top of Figure 2.2. Via this approach, we are able to generate initial conditions for our

computational experiments in a few seconds, as opposed to several hours, when attempting to generate all

500 points of S at once for certain “extreme” biased conditions, e.g. low kurtosis.

2.5 Results

Wehave applied ourmethod for directing spatial self-organizations, which generates biased initial config-

urations, to a number of bifurcating shape aggregations. We refer to the resulting shapes as the quarter-moon,

ellipse, discs, and two parallel line segments. These shapes (and their associated chemical fields) were uti-
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Shape Field Function

1.0/(ln(ln(ln(exp(sin(ln(cos(θ) ∗ (((d+ 0.761214) ∗ ln(d)) +
ln(d− θ)))) ∗ (θ − eθ)))− ((θ − d) ∗ (d/θ)))− ((θ − eθ) ∗

quarter-moon ln(ln(exp(sin(ln(cos(θ) ∗ (((d+ 0.761214) ∗ ln(d)) +
ln(d− θ)))) ∗ (((θ − eθ)− ((θ − eθ) ∗ (d/θ))) + 0.432846)))−

((θ − d) ∗ (d/θ))))))

ellipse 1.0/ cos(θ) + ln(d)

discs 1.0/(cos(sin(θ)− (cos(θ)− (ln(−0.367378)/(θ + d)))) + ln(d))

lines 1.0/(ln(ln(ln((cos(cos(d)) + (d ∗ (3d+ ln(θ) + ln(ln(θ)))))+
(((ln(θ)/(0.285192)) ∗ ((1.0/θ) + 0.423969))/d)) + d) + d))

Table 2.1: The field functions for the MPs utilized in this study. Note that exp(x) signifies ex.

lized in an earlier study [12], and had shown not to produce a single final, aggregated result. In our initial

MP work it was not uncommon for the output of the evolution process to generate chemical fields that led

to the formation of different shapes from a single field. These four were chosen because they generated two

different shapes in equal proportions (except for the parallel lines shape) from uniformly random initial

conditions. The chemical field functions that direct MPs to form into these shapes are detailed in Table 2.1.

Given biased initial conditions the aggregation simulations produce one final outcome in almost all of cases.

Moreover, by thresholding the moment constraints on the biased initial conditions it is possible to control

which shape is produced by a simulation. Figure 2.4 (top row) shows biased initial conditions for a number

of shape aggregations created with this method. The bottom row illustrates the final outcome of each MP

simulation that is produced from the associated biased starting configuration.

In order to identify the significant, distinguishingmoments for each shape, aggregation simulations (usu-

ally several hundred) with unbiased initial conditions are first performed. The shapes of the final outcomes

are visually inspected andplaced into categories. For eachfinal shape, themean and standarddeviationof the

four statistical moments of the evolving system are computed over the entire shape aggregation process. For
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Figure 2.5: Shape aggregation of the quarter-moon MPs starting from random initial conditions.

simulations starting with uniform random, unbiased initial conditions, the final outcomes of the quarter-

moon , ellipse, and discs shapes evenly split into two categories, with roughly 50% of the final outcomes

belonging to each class. The outcomes of the parallel line shapes are unbalanced, with 84.1% belonging to

the majority class (two lines) and 15.9% belonging to the minority class (one line). These results, as well as

the details that follow in the remainder of the section, are summarized in Table 2.2.

A typical unbiased aggregation for the quarter-moon shape is shown inFigure 2.5. The simulation reaches

a stable state by 35,000 simulation steps. We identified skewness in the x coordinate to be the significant

macroscopic feature for this shape. See Figure 2.6 for the evolution of this feature over the course of the

aggregation given uniform random initial conditions. Two sets of biased initial conditions (each with 100

examples) were generated with constrained skewness values in the x coordinate, with the thresholds set as

greater than 0.315 (2 standard deviations from the mean) and less than−0.315. Since the distributions are

generated stochastically, they do not have the exact targeted skewness value. So our acceptance test is based

on a threshold. We performed simulations with the quarter-moon interaction function for these 200 biased

initial conditions. Of the 100 initial conditions with a thresholded third x moment below −0.315, 100%

of the final outcomes are right-pointing structures. Of the 100 initial conditions with a thresholded third

xmoment above 0.315, 100% are left-pointing structures. Figure 2.7 presents the evolution of this feature

over the course of the aggregation given the biased initial conditions.

A typical unbiased aggregation for the ellipse shape is shown in Figure 2.8, with half of the unbiased ini-

tial conditions producing a single “perfect” ellipse, with the other half producing either two ellipses or a de-
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Figure 2.6: Skewness of the x coordinate of the unbiased quarter-moon shape aggregations over time.
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Figure 2.7: Skewness of the x coordinate of the biased quarter-moon shape aggregations over time.
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Figure 2.8: Shape aggregation of the ellipse MPs starting from random initial conditions.

formed “blob”. The unbiased simulation is computed for 10,000 steps. If the simulations are run for 50,000

steps they all will produce a single ellipse. Kurtosis in the y direction was found to be the significant macro-

scopic feature for this shape. See Figure 2.9 for the evolution of this feature over the course of the aggregation

given uniform random initial conditions. 100 simulations were performed with initial conditions that had

their y coordinates’ kurtosis thresholded to be above 2.18. Given these biased initial conditions all simula-

tion (100%) produced a perfect single ellipse by step 7,500. 100 additional simulationwere performedwith

initial conditions that had their y kurtosis set below 1.85. All 100 simulations produced two ellipses by step

7,500. Figure 2.10 presents the evolution of this feature over the course of the aggregation given the biased

initial conditions. These results show that not only can biased initial conditions direct the outcomes of the

simulations, but they can also significantly speed up the formation of the desired result, with the single el-

lipse being guaranteed to form by 50,000 steps in the unbiased case and by 7,500 steps given biased initial

conditions.

The discs dataset, when run with 200 unbiased initial conditions, produces 100 four discs structures and

100 structures of five or more discs, with a typical shape aggregation shown in Figure 2.11. The simulation

reaches a stable state by 15,000 steps. We identified variance in the x direction to be the significant macro-

scopic feature for this shape. See Figure 2.12. In our experiments as the variance of the initial conditions was

lowered, we found that we could generate a new shape (one that did not appear with unbiased initial condi-

tions), that contained only three discs. Thresholding the x variance of the initial conditions to be less than

10,270 would always (100%) produce a 3-disc result. A typical 3-disc shape is presented in Figure 2.4(c).
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Figure 2.9: Kurtosis of the y coordinate of the unbiased ellipse shape aggregations over time.
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Figure 2.10: Kurtosis of the y coordinate of the biased ellipse shape aggregations over time.
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Figure 2.11: Shape aggregation of the discs MPs starting with random initial conditions.

We were unable to consistently generate a 4-disc result for most simulations by thresholding the variance.

Thresholding the x kurtosis to be greater than 1.90 and less than 2.09 did lead to an increased number of

4-disc results (75%), which we deemed as less than consistent or robust. Figure 2.13 presents the evolution

of x variance over the course of the 3-disc aggregation given the biased initial conditions. Note that no 3-disc

results were produced when keeping the x variance above 15,500 in the biased initial conditions.

The parallel line dataset, when run with unbiased initial conditions, contains 526 instances of two verti-

cal parallel line segments (84.1%) and 100 instances of one vertical line (15.9%), as seen in Figure 2.14.

The simulation reaches a stable state by 50,000 steps. We identified kurtosis in the x coordinate to be the

significant macroscopic feature for the shape. See Figure 2.15. 100 simulations were performed with initial

conditions that had their x coordinates’ kurtosis thresholded to be below 1.90. Given these biased initial

conditions all simulation (100%) produced the two line structure. 100 simulations were then performed

with initial conditions that had their x coordinates’ kurtosis thresholded to be above 2.29. These biased con-

ditions produced results that consistently (100%) created the minority class structure of a single line by

10,000 steps. Figure 2.16 presents the evolution of x kurtosis over the course of the aggregation given the

biased initial conditions.

2.6 Discussion

Our experiments show that our agents (MPs) can be reliably directed to form into large-scale, macro-

scopic structures using local-only behaviors, based on chemical diffusion fields and biased initial conditions;
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Figure 2.12: Variance of the x coordinate of the unbiased discs shape aggregations over time.
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Figure 2.13: Variance of the x coordinate of the biased discs shape aggregations over time.
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Figure 2.14: Shape aggregation of the line segment MPs starting from random initial conditions.

thus producing a stigmergic phenomenon [112]. This type of global outcome is of particular interest to

those looking for a robust, adaptable, and independent self-organizing system. A review conducted by the

European Space Agency has shown that for their harsh working environment (space, Mars, etc...) the ro-

bustness of a local-only system is a key consideration and would allow for relatively simple (and easy to

transport) satellites/equipment to form into a larger andmore complex system that would be impossible to

transport as amonolithic structure [53]. Systems using global information, with centralized communication

between primitives, or a command-and-control structure, can formmore complex shapesmore quickly than

local-only approaches. However these systems can fail if this communication is interrupted or the command-

and-control structure breaks down [86].

The reasons that certain biased initial conditions may be used to direct the outcome of an aggregation

process are frequently visually obvious. For example, the biased initial conditions seen in Figure 2.4(a) are

clearly skewed to the right side of the arena. So it is clear that the majority of the agents are already amassed

around the center of the object to be formed. This can also be seen in Figure 2.4(c), where lowering the

variance of the X component makes the initial distribution of theMPs cluster around the central axis which

the three discs will form along. The visual evidence that biasing initial conditions effectively pre-starts the

aggregation process towards a desired shape is not as evident in the examples that constrain kurtosis ((b)

and (d)) from Figure 2.4. A higher Y kurtosis value in example (b) means that there should be a higher

concentration of agents along the Y = 500 axis. In (d), a lower X kurtosis value means that there should be
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Figure 2.15: Kurtosis of the x coordinate of the unbiased line segment shape aggregations over time.
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Figure 2.16: Kurtosis of the x coordinate of the biased line segment shape aggregations over time.
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more agents distributed away from the center of the arena. But in both of these cases, while statistically this

is true, it is not visually evident.

While a local-only system can be more robust than a system that relies on global information, there are

somenotable shortcomings associatedwith local-only systems. Themain challenge in these types of systems

is finding the local interactions that will lead to a desired emergent global behavior. While we use genetic

programming to find these local interactions, it is not always possible using this generate-and-test approach

to identify the correct local interaction. A more prescriptive approach to local interaction determination is

clearly needed.

As previously described our system generates initial conditions that bias the primitives’ locations based

on a significant statistical moment that was manually determined after processing unbiased data. This takes

time and requires a non-trivial amount of manual sorting and identification of images. Future work could

benefit froma computer-vision based shape identification system, something similar to the systemdescribed

in [131]. It should be noted that not all shapes are stable throughout the simulation. The vertical lines being

a good example; up to approximately 5,000 steps the 1-line and 2-lines shapes look very similar and have sim-

ilar statistical moments, however between 10,000 and 45,000 steps 15.9% of the simulations will converge

into a single line. This shows that some shapes may appear to be stable at one point during a simulation,

when actually they have not yet stabilized. Or in other words, our agents may produce more than one type

of distinct shape during their evolution. Thus, our experiments show thatwe are able to consistently produce

certain self-organized swarms at a specific point in time during their aggregation.

2.7 FutureWork

For these types of self-organizing systems, it is clearly desired to have a local-only solution. Given that the

methods described here require the computation of global system-level quantities (moments of the entire

distribution) and themanipulation of the locations of the agents in order tomeet some global constraint, we

have not achieved this goal. Future work could explore if our genetic programming approach to local chemi-

cal field evolution, that leads to the formation ofmacroscopic shapes, can also be used to find chemical fields

(i.e. local interactions) that direct a swarm that is uniformly randomly distributed into one that has specific

statistical properties. Thiswould lead to a two-step approach that is truly based on local-only interactions. In

this case, the agents, which have been uniformly randomly placed in an environment, would follow chemical

fields that move them into a biased initial condition. Then they would switch to a field that robustly directs
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them to form in a specific macroscopic shape.

Additional future work with this system should involve robustness testing of the parameters of the ini-

tial conditions. Previous work in this area has defined a lower-bound for the number of primitives required

to successfully create a single ellipse (400), but has not defined an upper-bound [10]. An upper and lower

bound on the number of primitives (which of course is related toMPdensity) in the simulation is important

as more complex shapes are created. Additionally, future work may involve further analysis of the aggrega-

tion processes that cannot be completely controlled. These investigations should reveal new features that

differentiate swarms that can be controlled via the reportedmethod and those that cannot. We imagine that

manipulation of other features will further enhance our ability to direct our self-organizing system.

2.8 Conclusions

We have previously developed an agent-based self-organizing shape formation system. The agents per-

form identical behaviors based on sensing local information emitted into the environment by the agents.

Genetic programming may be used to discover local interaction rules that lead the agents to self-organize

into a number of user-specified shapes. However, since the agents are initially uniformly randomly placed in

the environment and they stochastically follow prescribed rules, the aggregation simulations do not always

produce the samefinal results. In order to developmethods that could beused todirect the agents to robustly

form one specific configuration, we explored the relationships between an agent swarm’s moments and its

final configuration. After having shown that these moments could be used to predict the outcome of anMP

aggregation in previous work, we demonstrate in this work that biasing the swarm’s initial conditions based

on these moments can be used to consistently direct the swarm to produce a desired macroscopic shape.

By analyzing the statistical moments of the agents’ positions over the entire shape aggregation process,

we have identified significant, distinguishingmoment features, and utilize them as constraints on simulation

initial conditions for a number of bifurcating shapes. Biased initial conditions may be generated that meet

thesemoment constraints, which then affect the resulting shape outcomes. In almost all of our examples we

can completely control the result of the self-organization process. In some other cases we can significantly

increase the likelihood of producing a desired configuration. In amore general sense, ourwork also indicates

that complex, non-linear dynamical self-organizing systems may be controlled by manipulating their initial

conditions.

In the following chapters the agents, while remaining simple, becomemore complex than those presented
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in this chapter. Subsequent agents maintain internal state and allow for and seek social interactions with

other agents. Social interactions take the place of chemical concentrations, allowing for information dissem-

inationwithout using global control or knowledge transfer. Each agent, when interacting, has a local–only in-

teractionwith another agent; each agent sharing the knowledge they have and their current beliefs about that

knowledge. MPs in this chapter produced emergent behavior (shape formation) through self–organization

while following chemical gradients emitted by each MP. Agents in subsequent chapters use an aggregation

mechanism to arrive at an emergent prediction representing the beliefs of all agents.
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Quarter-moon

Shapes
Unbiased Per-
centage Thresholded Moment

Biased
Percentage

left-pointing 50% Skewnessx ≥ 0.315 100%
right-pointing 50% Skewnessx ≤ −0.315 100%

Ellipse

Shapes
Unbiased Per-
centage Thresholded Moment

Biased
Percentage

single ellipse 50% Kurtosisy ≥ 2.18 100%
non-single ellipse 50% 0%

two ellipses − Kurtosisy ≤ 1.85 100%

Multiple Discs

Shapes
Unbiased Per-
centage Thresholded Moment

Biased
Percentage

three discs 0% Variancex ≤ 10, 270 100%
no three discs 100% Variancex ≥ 15, 500 100%

Shapes
Unbiased Per-
centage Thresholded Moment

Biased
Percentage

three discs 0% 4%
four discs 50% 1.99 ≤ Kurtosisx ≤ 2.09 75%

five or more discs 50% 21%

Parallel Line Segments

Shapes
Unbiased Per-
centage Thresholded Moment

Biased
Percentage

two lines 84.1% Kurtosisx ≤ 1.90 100%
one line 15.9% Kurtosisx ≥ 2.29 100%

Table 2.2: Table summarizing results generated with unbiased and biased initial conditions.
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Chapter 3. WisdomofCrowdBots: HollywoodMovie Classificationwith

Social Agents

In this chapter I present the multi–agent, social environment where WoC–Bots are trained, interact so-

cially, and aggregate an overall prediction. This method tracks agent opinion throughout each of their inter-

actions, aswell as the initial features agents are trainedon, allowing for additional analysis to determinewhen

and howopinionsmay be changing throughout the crowd during the interaction process. The agents,WoC–

Bots, are designed as simple computer–based agents, implementing theories from Wisdom of Crowds and

use a competent aggregation mechanism to elicit an overall conclusion from a crowd of individual agents.

This method is tested using a Hollywood movie dataset, predicting the success of a movie based on the

movie’s budget and the reported revenue of the movie. Each prediction is completed after agents interact

socially, using a trust–based aggregation mechanism to determine an aggregate prediction.

3.1 Background

We, humans, want to predict the future; disease outbreak and risk factors, business success, economics,

and many more applications can benefit from better forecasting. Researchers have developed many tools to

help us make predictions, with artificial neural networks (ANNs) being a popular choice [30]. ANNs can

be used for classification, allowing us to take, for example, a series of features about an upcomingmovie and

determine, with fairly high accuracy, if the movie will be successful [90]. ANNs, however, are inherently

inflexible [134]. Recent efforts are improving their flexibility by adding to their basic design, as seen in

transfer learning [79], however this increases complexity and compute / data requirements while further

obfuscating the internal workings of an ANN, making it more difficult to answer the “why” about some

outputted classification [129].

Predictionmarkets (PMs) are an alternative to traditional classification algorithms. They are designed to

determine the probability of a future event taking place [18]. Well–designed PMs encourage agents, human

or computer–based, to contribute information to the market through trading shares and incentivizing cor-

rect, truthful information sharing, then aggregate the information from individual agents into a collective

knowledge [85]. PMs work because the aggregate knowledge of the group will generally be more precise

and complete than the knowledge that any individual within the group holds [17]. However, participants
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are expected to bewell–informed, whichworkswell with humanparticipants, but is infeasible for computer–

based agents [128]. Computer agent–based PMs are difficult and programmer–intensive to create. Othman

said on computer–based agents, “Agent–based modeling of the real world is necessarily dubious. Attempt-

ing to model the rich tapestry of human behavior within economic structures – both the outstandingly bad

and the terrifically complex – is a futile task.”[80] Even if it were possible tomodel the complexity of human

knowledge and decision making within some narrow topic, it is extremely difficult to generalize across top-

ics. Alternatively, predictionmarkets based on simple agents have had some limited success. However, work

done by Othman and Sandholm [81] has shown that simply changing the order in which the simple agents

participate in the market can drastically impact the outcome of the market, indicating that “markets may fail

to do any meaningful belief aggregation.”

An alternative to PMs is Wisdom of the Crowd (WoC). WoC takes the approach that the opinion of a

large, diverse group will be more accurate than any individual opinion within the group given a sufficiently

competent aggregation mechanism [34]. WoC does not expect or require expert knowledge, Scott Page

said “The squared error of the collective prediction equals the average squared error minus the predictive

diversity” [82]. This means the more diverse the crowd, the smaller the predictive error.

WoC–Bots are a computer–agent–based approach to making binary predictions using a WoC approach

where simple agents (WoC–Bots), without expert knowledge, are trained with different, small subsets of

features that describe the data. This initially gives a group of agents with a diverse and independent set

of knowledge. The agents interact with one another socially, sharing knowledge, determining the trust they

have in other agents and the confidence they have in their ownopinion, forming a knowledge–diverse crowd.

During the interaction period the agents can change their opinion given enough evidence foundduring inter-

actions. The architecture described in this chapter is the basis for experimental results presented in this and

subsequent chapters. This approach is designed to bemodular and extensible, allowing for varied algorithms

that govern agent initialization, movement, interaction, and voting [44].

3.2 Data&ExperimentDescription

WoC–Bots were tested by making binary predictions about the success of Hollywood movies using a

trust–based aggregation mechanism to determine an overall prediction from all agents and were compared

with the classification performance of a simple multi–layer perceptron classifier. Success for a Hollywood

movie was defined as the reported revenue being greater than 2× the reported budget for the movie. It is
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Table 3.1: Features available for classification

Features Description
budget given to all agents, reported budget for movie

tmdb_popularity dynamic variable from TMDb API attempting
to represent interest in movie

revenue used for sanity checks, reported revenue
runtime unreliable metric for success without including genre information

tmdb_vote_average average score from TMDb, can be combined with ML average
tmdb_vote_count total votes for a movie from TMDb, can be combined with ML count
ml_vote_average average score from ML, can be combined with TMDb average
ml_vote_count total votes for a movie from ML, can be combined with TMDb count

ml_tmdb_genres combined genre information from TMDb & ML;
first 2 listed genres used

vote_average combined tmdb_vote_average and ml_vote_average
vote_count combined tmdb_vote_count and ml_vote_count

difficult to determine exactly what revenue is considered a success, and it differs on amovie–by–movie basis.

However, advertising and promotion budgets are generally less than the production budget, which indicates

studios should start to see positive cash flow if a movie makes 2× the production budget [26]. Additionally,

defining success in this manner split the data roughly equally between success (47.5%) and failure (52.5%).

Data was gathered from The Movie Database (TMDb) ¹ and MovieLens (ML) ². The MovieLens dataset

provides information for more than 27,000 movies, while the TMDb dataset includes 5,000 movies. Only

movies found in both datasets, with complete information for all features used for classification, were consid-

ered. We found 4,722movieswhich exist in both datasets, however 1,023movies appear to contain incorrect

information, e.g. negative values for movie budget or movie revenue; these movies were removed from the

testing and training subsets. Two datasets were considered to help reduce sparse areas for less popular or

older movies. 3,699movies were considered for testing and training, split 80% / 20% respectively. Table 3.1

describes the features considered for classification. The data was transformed in the following ways:

• Movies were matched between the two datasets based on ID, using “movieId” and “tmdbId” values

provided in the ML dataset.

• The ML dataset used a 0-5 rating system while the TMDb dataset used a 0-10 rating system, the ML

ratings were multiplied by 2.

• Only overlapping genres from each dataset were considered; e.g. if, for Toy Story, theMLdataset lists

¹https://www.kaggle.com/tmdb/tmdb-movie-metadata/
²https://www.kaggle.com/grouplens/movielens-20m-dataset/

https://www.kaggle.com/tmdb/tmdb-movie-metadata/
https://www.kaggle.com/grouplens/movielens-20m-dataset/
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it as “action, animation, family” and the TMDb dataset lists Toy Story as “family, adventure, anima-

tion”, the movie was considered to fall into only the “animation” and “family” genres.

3.3 MethodDesign

3.3.1 Agent Design

Agents are designed to be modular, presenting an interface that allows for different algorithms which

govern all aspects of their behavior. Agents are responsible for coordinating and managing the following

functions:

• Classifier: Simple MLP classifier

• Classifier configuration: Shape, depth, activation and optimization algorithms

• Initialization algorithm: How the agents are initialized within the interaction space

• Movement algorithm: How the agents move within the interaction space

• Interaction algorithm: How (and if) an agent interacts with other agents

• Scoring algorithm: How an agent reaches the conclusion it does; a combination of the internal classi-

fier and information learned while interacting with other agents

3.3.2 Classifier

This classification method uses simple agents (WoC–Bots) without expert knowledge. Each agent con-

tains a very small, very simpleMLP classifier. All agents are configured with similar classifiers, each contain-

ing a small number of input nodes (2-10), 1-4 hidden layers – depending on input size – rounded to the

nearest integer value of input_size ∗ 0.3, and an output layer, with two output nodes for binary classifica-

tions. The goal is for eachMLP to be as shallow as possible while still extracting features from the input, and

input_size ∗ 0.3 has proven to be sufficient to extract features without creating overly deep classifiers. This

work uses DeepLearning4J (DL4J) as a neural network and data parsing library ³[110]. All MLP networks

use the DL4J implementation of the Adam updater [57] (learning rate), softmax activation function [43],

and traditional stochastic gradient descent for optimization [4].

³https://deeplearning4j,org/

https://deeplearning4j,org/
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In each of the experiments conducted, each agent’s classifier received 1-4 highly correlated features in

common with all agents. Feature correlation was determined using principal component analysis (PCA)

[1], run externally to the approach being described here. Other available features were distributed across

multiple agents randomly with duplicate features and multiple agents with the same feature set neither lim-

ited nor encouraged. Following theories from WoC, this leads to a group of agents with diverse knowledge.

Agents that show poor MLP classification performance during the initial training step are not included in

the remainder of the classification steps. Poor performance was defined as less than 50% accuracy on the

evaluation set.

3.4 Interaction Period

Following the MLP training period for each agent, the agents participate in an interaction period in a

simulated 2D arena. The purpose of the interaction period is to encourage information dispersal amongst

agents using local–only interactions, e.g. two agents interacting with each other.

3.4.1 Agent Initialization&Movement

All agents participate and interact within a centralized ‘interaction arena’ (Arena). All agents must be

initialized to an empty space within the bounds of the interaction arena. All movements must be within the

bounds of the arena and at most two agents can share the same space within the arena. Interaction between

three ormore agents at the same location is not supported, with no current plans to implement support. The

Arena can take any 2D shape comprised of rectangular faces, allowing for arrangements from a simple 4×4

square to something more complex, with multiple rooms, floors, and restricted movement between each,

e.g. a simulated building. In this work, the arena is a square with the number of discrete spaces available to

the agents equal to 2 times the number of participating agents.

Each agent maintains a history of their movements within the arena, their interactions, and how each

interaction affected their internal belief. Historical information for each agent is stored in memory during

each iteration before being dumped to individual SQLite tables for long–term storage.

Agents are initialized with an InitializationAlgorithm and a MovementAlgorithm which im-

plement simple interfaces, init() and move(), respectively. init() has a single goal, initialize the agent

in the arena in anempty space. Initialization canbe random, or account for complexities like locationof other

agents, placing agents with similar features close together, localizing similar information, or spreading them
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out to facilitate transmission of information between dissimilar agents. Localizing similar information may

allow a group of similar agents to come to an optimal conclusion, whereas spreading similar agents out may

allow the best performing agents to maximize their influence on other agents [40]. In the experiments con-

ducted throughout this dissertation, the agents are initialized randomly inside the arena and agents are not

allowed to share spaces with other agents at initialization. The method handles missing data for any given

sample by simply disallowing participation of agents that have missing data for the current sample. This

method allows us to consider all available information for each sample without requiring data completeness

for all samples.

move() also has a simple goal, move the agent within the arena. move() can be as simple or complex

as necessary; randomly selecting a space within the arena and ‘teleporting’ the agent to the new space, or

it can require the agent to move towards some target location or another agent. Agents interact when two

agents move onto the same space. The MovementAlgorithm used for this work moves agents randomly

in a “Manhattan–like” fashion, allowing each agent to move one step north, south, east, or west, within the

bounds of the arena, at each iteration. The direction is randomly selected, and agents cannot interact with

each other two times in a row, ormore than twicewithin five separatemovements. Agents who cannotmove

because of these restrictions are ‘teleported’ to a randomly selected empty space within the arena. Addition-

ally, agents are occasionally ‘teleported’ to a random space within the arena to further facilitate information

dispersal. The total number of iterations (interactioniters) the interaction period is allowed to run for is deter-

mined by the number of participating agents (num_agents)

interactioniters = num_agents ∗ 0.10 (3.1)

and was determined to balance information sharing with run time through experimentation. Experimen-

tation with the Hollywood dataset used in this chapter determined increasing the number of iterations to

num_agents ∗ 0.25 did not increase the predictive performance but did increase runtime. The interaction

period is operated in discrete iterations; each agent is moved during each iteration and all interactions be-

tween agentsmust complete before the next iteration can begin. Centralized control for movement location

and validation is being used to ease implementation, however it is not a requirement. Agents are capable of

validating location andmovement on their own, or if required, having some number n other agents confirm

all positioning as valid in a decentralized manner.
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Table 3.2: Internal scoring variables

Variable Description
current_prediction Binary, class 0 or class 1.

trust_score Updated during interaction based on
agreement & performance.

features A list of features used by the agent’s classifier.

prior_performance Long-term history of agent performance, varied between
0.7 and 1.3 where 1.0 is average performance.

certainty
Initialized to MLP classifier performance, updated
during interaction period. Represents how strongly

the agent believes in the current prediction.
eval_accuracy Initial classification accuracy.
eval_precision Initial classification precision.

eval_recall Initial classification recall.

confidence Biased value based on
accuracy, precision, and recall.

3.4.2 Interaction& Scoring

The InteractionAlgorithm and ScoringAlgorithm are also designed to be modular, with the

InteractionAlgorithm responsible for deciding with whom an agent should interact, truthfulness, and

trust updating. TheInteractionAlgorithm is required to implement three functions,shouldInteract()

which determines if the agent will interact with another agent, truth() which determines if the agent

should be truthful with another agent, and updateTrust() which attempts to update the other agent’s

trust score. updateTrust() is allowed to be a NO-OP function when it is not desirable to update other

agents’ trust scores. This work currently assumes all interactions are acceptable, does not limit repeat inter-

actions (except as previously described), and requires all interactions to be truthful.

TheScoringAlgorithmdetermines how interactions update an agent’s internal belief state. Agents are

initialized with specific internal values, referenced in Table 3.2, that are (in part) updated during each inter-

action. Table 3.2 presents the attributes which describe the internal state of an agent during the interaction

period. Many of these values are available to other agents during interactions within the social interaction

arena. These values allow each agent to determine how certain another agent is, what that agent’s initial

classification values were, and how much influence it will allow the agent to have over its current belief. Ad-

ditionally, the confidence attribute can be biased to favor accuracy, precision, or recall metrics depending

onwhichmetric is themost important for the given classification problem. For example, a classification task

such as the breast cancer dataset presented in Chapter 4 may benefit from biasing towards recall to better
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avoid false negative predictions

confidence = accuracy ∗ 0.25+ precision ∗ 0.25+ recall ∗ 0.50. (3.2)

Similar to the previous algorithm interfaces, theScoringAlgorithmusedby each agent allows the scor-

ing to be implemented in a way most appropriate to the given problem. The algorithm is required to imple-

ment a single function, updatePrediction which updates the current prediction based on information

from the most recent interaction. The ScoringAlgorithm used for the experiments in this dissertation

works as follows: during the interaction period, two agents, agent a and agent b, interact when sharing a

space within the arena. The following equations govern the updates to the internal state of agents during

the interaction and determine if and when an agent’s prediction will change, and what confidence the agent

has in its current prediction. The equations assume agent a is receiving information from agent b, however

during an interaction the inverse will also occur.

When two agents meet, agent a first determines how willing it is to accept information from agent b, a

function of a’s current certainty where acertainty represents a’s current certainty and aacceptance repre-

sents a’s willingness to accept information from agent b.

aacceptance = 1.0− acertainty (3.3)

Agent a determines how much influence to allow agent b, binfluence, a function of agent b’s confidence,

trust_score, and certainty, and agent a’s acceptance, aacceptance.

binfluence = bconfidence ∗ aacceptance ∗ btrustCertainty, (3.4)

where btrustCertainty represents trust_score ∗ certainty,

btrustCertainty = btrustScore ∗ bcertainty. (3.5)

Agent b’s influence is further modified based on agent b’s prior_performance, represented by bpriorPerf,

such that the corrected influence can be represented by bcorrectedInfluence,

bcorrectedInfluence = bpriorPerf ∗ binfluence. (3.6)
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If agent a and agent b have different predictions bcorrectInfluence will be multiplied by −1 to act against agent

a’s current predictive belief. Agent a’s updated certainty, acertainty, can be calculated by Eq. 3.7, where a’s cer-

tainty increases if both agents a and b have the same prediction and decreases if the predictions are different,

acertainty = acertainty + bcorrectedInfluence. (3.7)

If agent a’s certainty value falls below 0.50, agent a will change its prediction. If the prediction is changed,

agent a’s certainty is updated by Eq. 3.8.

acertainty = 1.0− acertainty. (3.8)

Following the interaction period, an overall prediction is made by an opinion aggregation algorithm. The

following chapters discuss two approaches that have been implemented and report on the results of each

method.

3.5 OpinionAggregation

Effective opinion aggregation is an open question with many different possible approaches [31]. The

first method implemented uses a voting system, where each agent receives amaximumof 100 possible votes

for their predicted binary outcome. Three aggregation methods for vote aggregation were considered; the

first and simplestmethod gives equal weight to each agent regardless of performance, theUnweightedMean

Model (UWM) [49]. The second method gives each agent votes based on prior accuracy, where an 80%

accuracy rate would result in 80 votes, similar to the Weighted Voter Model (WVM) presented in [117].

Agents are initially allowed 50 votes each until an accuracy for prior performance can be determined. The

third method is a custom design that is similar to the WVM, however it also takes into account the trust

score that other agents are allowed to modify during the interaction period, giving more granular control

over how much influence an agent has on the aggregate opinion. Total votes for agent a is represented by

atotalVotes, where apriorAccuracy represents a’s prior accuracy and atrust represents a’s trust score,

atotalVotes =
((
apriorAccuracy + atrust

)
/2
)
∗ 100. (3.9)

During an interaction the agent, a, is allowed to modify another agent’s, b, trust score (btrust) based on
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Figure 3.1: Agent training, initialization, movement, interaction, and voting.

how agent b has performed in the past, if agent a and b are in agreement (doAgree), and if prior information

that a has received from b was correct. Agent a will check its interaction history, look for any interactions

with b to determine what percent of interactions gave advice that was correct (bpercCorrect). If there are no

prior interactions the trust score will not be modified. The trust score can be modified a maximum of 5%

during each interaction

btrust = btrust + 0.05
(
bpercCorrect ∗ bpriorPerf

)
∗ doAgree. (3.10)

A high-level overview of the training, interaction, and voting process can be seen in Figure 3.1. The inter-

nal MLP for each agent is trained using available training data, the agents are presented with a binary ques-

tion, they are initialized in an arena where theymove and interact for some number of iterations. Agents are

then assigned some number of votes based on the algorithm; described in section 3.5 which they use to vote

at the end of the interaction period.

3.6 Results

This chapter compares the results from the social, agent–based approach to the results produced by mul-

tiple configurations of a traditional, monolithic MLP developed in DL4J. Table 3.3 shows the configuration

and accuracy under different training conditions for each of the 10 agents, showing how the MLP for each

agent performs by itself after initial training. Once trained, the agents can participate in any decisionmaking

configuration without retraining their classifiers.

10 MLP networks were tested, with a variety of feature sets, and with one containing the final revenue

to confirm both the agents and the MLP networks were learning. Figure 3.2 shows the accuracy for five



44

Table 3.3: Agent Classifier Accuracy for 5 and 50 epochs

Features 5 Epochs 50 Epochs
budget, revenue 98% 100%

budget, vote_average, vote_count 77.2% 77.6%
budget, tmdb_popularity, vote_average, vote_count 75.4% 75.7%

budget, vote_count 75.7% 75.5%
budget, tmdb_popularity, tmdb_vote_average, tmdb_vote_count 72.8% 74.9%

budget, tmdb_vote_count, ml_vote_count 73% 73.4%
budget, ml_vote_average, ml_vote_count 62.2% 64.1%

budget, ml_vote_count 60.3% 61.9%
budget, tmdb_vote_average 60.9% 61.4%

budget, runtime 53.9% 56.4%
Average (budget, revenue agent removed) 67.93% 68.99%

classifier configurations when trained for 5 and 50 epochs. The figure also shows the change in classifier

accuracy when various features, shown on the Y–axis, have been removed as inputs to the network.

Comparing training timeswith the social agents, training 10MLP classifiers in parallel takes 1minute and

1 second (3minutes and 32 seconds if trained sequentially) vs. 22 seconds to train 10 agents for 50 epochs. It

should be noted that inference is slower usingWoC–Bots; it takes an average of 260milliseconds to test 740

examples using an MLP classifier incorporating all the features listed in Table 3.1, while it takes the WoC–

Bots, encompassing the same feature set, an average of 13.4 seconds to test the same 740 examples. But, once

trained, the agents can be reconfigured to compute new prediction results for different feature sets, without

requiring retraining, unlike a monolithic MLP.

Accuracy results from five configurations of the social, agent–based prediction method can be found in

Figure 3.3. Results are shown for three aggregationmechanisms after 50 epochs of training: (1) unweighted

equal voting, (2) votes assigned based on initial classifier performance, and (3) votes assigned based on clas-

sifier performance and agent trust (described in section 3.5), withmethod (3) consistently out–performing

methods (1) and (2). Similar to Figure 3.2, Figure 3.3’s labels show which features were included in the

interaction. Feature distribution across agents was optimized for accuracy; that is, the most highly corre-

lated features were distributes to each agent. Five agents participated in each interaction. with the budget,

vote_average and budget, vote_count simulations being comprised of five copies of the same agent.

WoC–Bots out–performed the MLP classifier in all cases except where final revenue was included as a

feature, indicating the aggregationmethod does not give enoughweight to an agent with exceptionally good
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Figure 3.2: Accuracy for single hidden layer MLP classifier when trained for 5 and 50 epochs, aver-
aged over 10 runs of the algorithms. The x-axis represents prediction accuracy, and the y-axis shows
which features were included in the classification. Error bars represent standard deviation.

performance. We tested removing a highly correlated ⁴ feature, vote_count, which caused a performance

decline in both the MLP and social agents, with the MLP network accuracy declining 4% compared to a

decline of 1.9% in WoC-Bots, indicating the agents are more resistant to feature drop–out. Removing a

noisy featurewas also tested,runtime, which showed a1.7%performance increase in theMLPnetwork and

only a 0.3% increase for WoC–Bots, indicating poorly performing agents have little impact on other agents

during the interaction period and receive few votes during opinion aggregation. Statistical analysis confirms

that runtime is not highly correlated in both the TMDb dataset and an ensemble dataset combining the

Movielens and TMDb data, as used in these article [6, 70].

Figure 3.4 shows the performance ofMLP networks andWoC–Bots as features are systematically added.

The results presented in this figure are produced via the classifier performance & trust aggregation mecha-

nism. The agents are configured to allow formaximum agent participationwithout duplicating agents in any

simulation testing more than 2 features. Four copies of an agent, representing budget and vote_count,

participated in the first simulation. Four agents participated in the budget, vote_count, popularity

⁴http://ibomalkoc.com/movies-dataset/

http://ibomalkoc.com/movies-dataset/
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Figure 3.3: Accuracy for agent interaction using three different aggregation mechanisms, averaged
over 10 runs of the algorithms. The x-axis represents prediction accuracy, and the y-axis shows which
features were included in the classification. Error bars represent standard deviation.

simulation, eleven agents participated in eachof the following4–feature simulation. 26 agents participated in

thebudget,vote_count,vote_average,runtime,popularity simulationwith one agent receiving

5 features, five agents receiving 4 features, ten agents receiving 3 features, and ten agents receiving 2 features.

Infiveoutof six simulations,WoC–Botsout–performed theMLPnetwork, and significantlyout–performed

the MLP network when the most important feature, budget, was removed. WoC-Bots performed best

when all features were available, and when the maximum number of unique agents participated in the sim-

ulation. The MLP network performed best when the three most highly correlated features were the only

features being considered. This performance difference indicates WoC–Bots are able to gather additional

information from features that are less correlated with revenue without a net negative impact to their ac-

curacy from the additional feature noise.

Figure 3.5 shows the accuracy for training epochs 1–50 for anMLPnetwork andWoC–Bots. Thenetwork

was configured with 5 features, budget, vote_count, vote_average, runtime, and popularity.

Five agents participated in the simulation with four agents receiving 2 features and one agent receiving 5

features. Each 2–featured agent received budget as a feature and one other feature from the list of features.
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Figure 3.4: Accuracy of MLP vs WoC-Bots w/ Max agent configuration while adding features, aver-
aged over 10 runs of the algorithms. Error bars represent standard deviation.

No agent was duplicated. We choose this agent configuration to best match the features used by the MLP

network in order to make as fair and direct comparison with the MLP network as possible, despite WoC–

Bots performing better whenmore agents participate in the simulation, as seen in Figure 3.4. WoC–Bots are

out–performed in this configuration, slightly, by the MLP network when trained for 40+ epochs, however

they are able to more quickly integrate information compared to the MLP network, reaching an optimum

(76.3%) at 20 epochs vs. the MLP optimum (76.8%) at 40 epochs.

3.7 Conclusion

The WoC–Bots approach can include new features by creating a new agent to represent those features,

allowing the agent to be included in the next “interaction” without the need to retrain a network or employ

complex, dynamically expandable networks found in [129] when incorporating new data. Additionally, our

design allows us to quickly test the impact of removing features or testing various combinations of features

without the time–consuming retraining step required when changing features in an MLP network. This

allows, for example, testing the impact of removing a feature like runtime quickly.

WoCperformance depends on two attributes, a diverse and independent crowd and an aggregationmech-



48

69.10%

73.50%

74.20%

75.70%

76.30%

75.70%

76.10%

76.30%

76.30%

76.20%

76.30%

63.90%

71.20%

73.60%

74.40%

74.30%

75.10%

76.30%

75.90%

76.80%

76.50%

76.50%

60.00% 62.00% 64.00% 66.00% 68.00% 70.00% 72.00% 74.00% 76.00% 78.00% 80.00%

1

5

10

15

20

25

30

35

40

45

50

WocBots vs. MLP 1-50 Epochs Accuracy
for 

Budget, vote_count, vote_average, runtime, popularity

MLP WocBots

Figure 3.5: Accuracy of MLP and WoC-Bots for 5 features over 1 - 50 epochs

anism that assigns appropriate weights to individuals within the crowd to reach the correct collective deci-

sion [109]. We also know from Othman [80] that is it not reasonable to develop a computer agent that

accurately represents the intricate and diverse knowledge that a human has. Therefore, we need to find the

right balance between independently thinking agents within a crowd and information sharing to better rep-

resent the diverse knowledge of human agents.

WoC–Bots demonstrate a robust, flexible alternative to traditional ANNmethods formaking predictions

about specific future events using theories from prediction markets and wisdom of crowds. The results pre-

sented in this chapter show we can attain similar predictive performance to that of a multi–layer perceptron

classifier when classifyingHollywoodmovies, while requiring less training time and offeringmore flexibility

and prediction options. Further, this method is robust, demonstrating only a 1.9% loss in accuracy when

removing the vote_count feature vs. a 4% loss in accuracy when the same feature was removed from the

MLP network.

Future chapters investigate an improvement to the aggregation mechanism. Theories from swarm intel-
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ligence [137] are employed to better aggregate the information that each agent possesses in a manner that

better extracts information from the correct agents while limiting the impact that incorrect agents have on

the collective prediction. UnanimousA.I.⁵ has a unique, swarm–based aggregationmethod that is capable of

arriving at a collective prediction. Unanimous A.I. maintains a “human-in-the-loop” approach [94], where

their ‘swarm’ is comprised of humans, answering binary and non–binary questions by working together to

move a virtual puck to the collective answer [95]. We prefer a computer–agent–based approach that allows

for new agents to be created as needed to answer questions as they come up. Chapter 4 focuses on imple-

menting a swarm–based algorithm to produce an “emergent prediction” from a group of relatively simple,

modular agents.

⁵https://unanimous.ai/

https://unanimous.ai/
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Chapter 4. Swarm-basedOpinionAggregation

Thischapterpresents results for a swarm–derivedaggregationmechanism, specifically ahoneybee–derived

optimization algorithm. Thebasis for the initial training and social interaction steps is the same asChapter 3,

with each agent containing an MLP network and interacting socially in an interaction arena. However, in-

stead of using a trust–based voting mechanism, a swarm–based mechanism is used for prediction aggrega-

tion. This mechanism allows for confidence scores to be derived for each classification as well as improves

the overall variance in classification when compared with the previously used vote aggregationmechanisms.

4.1 Background

Prediction aggregation in multi–agent / social systems is an open problem with various different pro-

posed solutions [31]. Swarming behavior in nature is something many people have witnessed, schools of

fish avoiding a predator, birds flocking together, and insects working collectively to achieve some goal are

common sights. In all cases, relatively simple, from an intelligence standpoint, individuals perform some

action which ultimately produces complex behavior for the school, flock, or colony. This emergent com-

plex behavior can be seen in more complex individuals as well, with human opinion successfully aggregated

in [95] and [94] using ‘swarm intelligence’. Swarm intelligence in computer science can be used to solve

large and complex optimization problems [50]. Based on the emergent behavior seen in simple animals and

the success seen when aggregatingmore complex human opinions, a swarm–based aggregationmechanism,

specificallymodeled on honeybee foraging behavior, was implemented to aggregate computer–agent predic-

tions. Bee–colony optimizations was selected based on its efficient computation time, compared with other

swarm–based mechanism [64].

Bee colonies are able to forage across a large area in multiple directions, often finding optimal sources

for nectar and pollen – a task that looks like many optimization problems in computer science. A subset of

bees (the scouts) move throughout the colony’s foraging area, searching for high yield food sources [111].

Upon returning to the colony, the scouts perform a “waggle dance”, advertising the location of the food

source to other bees within the colony, which can then forage at the advertised location [20]. The length

of time a bee is dancing is generally proportional to the quality of the food source, with additional bees

recruited to higher quality food sources due to longer waggle dances [122]. This allows for high yielding
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food sources to be advertised and foraged as long as they remain profitable, with a drop off in interest as

better sources are found or as the source becomes depleted [16]. This chapter describes a computer–agent–

based implementation of this method, simulating bee behavior to aggregate individual agent predictions to

give a system–wide emergent prediction for binary classification problems.

In this chapter, the swarm aggregation method is applied by retrospectively examining tumor character-

istics acquired in the routine care of patients at Drexel University College of Medicine to make a binary

classification, node–positive or node–negative, that predicts lymph node metastasis status, a determination

that could obviate surgical dissection of the lymphnodes. Multiplemethods exist for predicting lymphnode

metastasis in breast cancer patients, the Memorial Sloan-Kettering Cancer Center (MSKCC) nomogram is

an early attempt at solving this problem, that uses standard patient characteristics, such as patient age, pri-

mary tumor size, presence of lymphatic invasion, histologic grade, among other patient characteristics [105].

The MSKCC nomogram has, however, shown inconsistent results across datasets and may not be viable as

a tool for decision making in some patient populations [119, 118]. Deep learning methods have been also

been applied to this problem, specifically using convolutional neural nets as seen in [63], SVMs as seen in

[132], and logistic regression in [14]. Similarly to the MSKCC nomogram and logistic regression study

from [14], WoC–Bots use available patient characteristics to predict if lymph node metastasis has occurred

in breast cancer positive patients. The swarm aggregation mechanism is used to place predictions in confi-

dence intervals, which leads to an improvement in classification accuracy for a subset of high–confidence

subjects.

4.2 Methods&Materials

4.2.1 Patient Features

Lymph node metastasis is predicted in 483 de–identified breast cancer patients. This research was ap-

proved by theDrexel University IRB office, with the data being distributed to the investigators using an hon-

est broker. All features that were available for at least 50% of patients were considered, unlike previous work

which considered only highly correlated features and required feature completeness [120, 58]. Table 4.1

shows the clinical features available for classification. Not all features were available for each patient.

In addition to the basic score values for ER, PR, P53, Ki67, andHer2, the agents were given access to the

raw count values (when available) for 1+, 2+, 3+ (cell staining intensity), total cells measured, membrane

intensity (where applicable), and positive and negative intensities (where applicable). These features were
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Table 4.1: Characteristics of patient populations

Feature n = 483 %

Age
≤ 45 103 21.3
> 45 380 78.7

pT Max size (mm)
≥ 200 5 1.0
100-199 15 3.1
50-99 51 10.6
25-49 125 25.9
0-24 271 56.1
unknown 16 3.3

Angio Lymphatic Invasion
Absent 127 26.3
Present 200 41.4
Unknown 156 32.3

pT Stage
Unknown 36 7.5
pT1 210 43.5
pT2 173 35.9
pT3/pT4 64 13.3

Histologic Grade
Unknown 33 6.8
1 53 11.0
2 164 34.0
3 233 48.2

Tubule Formation
Unknown 30 6.2
1 (> 75%) 13 2.7
2 (10− 75%) 98 20.3
3 (< 10%) 342 70.8

Nuclear Grade
Unknown 29 6.0
1 20 4.1
2 151 31.3
3 283 58.6

Lobular Extension
Unknown 202 41.8
Absent 147 30.4
Present 134 27.7

...
...

...

Feature n = 483 %

...
...

...
...

...
...

...
...

...
Pagetoid Spread

Unknown 213 44.1
Absent 177 36.6
Present 93 19.3

Perineureal Invasion
Unknown 267 55.3
Absent 186 38.5
Present 30 6.2

Calcifications
Unknown 115 23.8
Absent 126 26.1
Present 176 36.4
Present w/ DCIS 66 13.7

ER Status
Unknown 51 10.6
Negative 155 32.1
Positive (> 10%) 277 57.3

PR Status
Unknown 54 11.2
Negative 201 41.6
Positive (> 10%) 228 47.2

P53 Status
Unknown 81 16.8
Negative 255 52.8
Positive (> 5%) 147 30.4

Ki67 Status
Unknown 56 11.6
Negative 114 23.6
Positive (> 14%) 313 64.8

Her2 Score
Unknown 83 17.2
0 119 24.6
1 169 35.0
2 54 11.2
3 58 12.0
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collectedusingquantitative image analysis applied towhole–slide imagesof representatives slides acquired at

the time of diagnosis. Slide scanning was done on either an Aperio XT or a Hamamatsu S210 slide scanner

with quantification performed using Aperio Imagescope software and conformed to College of American

Pathologists (CAP) recommendations.

4.2.2 SwarmAggregation

Thecomputer–based versionof the honeybee foraging algorithmoperates similarly to the bee foragingbe-

havior previously described. The swarm aggregation step is designed for all agents to support a single binary

opinion, either 1 or 0. All of the agents which participated in the social interaction stepmust also participate

in the swarming step. In nature, between 20% and 30% of bees act as scouts [55], so 20% of agents are

randomly selected to be “presenters”, similar to the “scout” bee in nature. The remaining agents are assigned

as “watchers”, assigned to the presenting agents. Initial assignment of watchers is accomplished using ‘fitness

proportionate selection’ [68]. Using fitness proportionate selection, each of the presenting agents has an as-

signed probability, aprob, between 0 and 1, where the sum of all probabilities of all presenting agents is 1 after

normalization. The probability for each agent is calculated by Eq. 4.1, an equally weighted combination of

the presenting agent’s prior_performance, apriorPerf, confidence, aconfidence, and trust_score, atrust

aprob = (apriorPerf + aconfidence + atrust)/3. (4.1)

The fitness proportionate selection algorithm uses the computed probabilities for each of the presenting

agents to assign watchers to be supporters of each of the presenting agents using aprob, such that presenting

agents with a higher aprob will more frequently be assigned watchers than those with a lower aprob value.

Watchers can only be assigned to a single presenting agent at any given time and ‘support’ that presenting

agent simply by being assigned to it. However, each watcher can request re–assignment up to two times if its

prediction is different from that of the presenting agent it was assigned, and if its apriorPerf value is higher than

the presenting agent’s, allowing a high performing agent the opportunity tomove to an agent it thinks better

represents its prediction. However, this process uses the same fitness proportionate selection algorithm,

which offers no guarantee that amovewill be seen as beneficial to thewatching agent. The limit of twomoves

accomplishes three things, (1) reducing compute time, (2) preventing a potential infinite loop of constant

movement, and (3) introducing further diversity of opinion where agents may be assigned to support an

agent they disagreewith – conceptually similar to introducing randomness in genetic algorithms [72]. Once



54

assignment and agent movement is complete, the presenting agent represents itself and the watchers it was

assigned; for example, if a presenting agent is assigned 10 watchers, that presenting agent’s opinion is now

worth 11 ‘votes’ during the final aggregation process, 1 vote for each watcher and its own vote.

4.3 Confidence Intervals

Thepresenters andwatchers now represent a swarm of agents which goes through iterative steps to arrive

at a collective binary prediction with an associated confidence value. The confidence value is determined by

repeating the process of assigning watchers to presenters and taking a vote of all presenting agents. While

this process is running, the decision threshold is iteratively lowered if some higher threshold has not been

met. The initial threshold is 100% agreement between all presenting agents, directly following the initial

process of assigning watchers to presenters and taking a vote of all presenting agents. If this threshold is

met, the prediction is considered “Very High Confidence”, the prediction and confidence is returned and

the swarming period ends. When there is no immediate agreement among all participating agents, each

watcher performs an interaction with all of the other watchers assigned to the presenter they are assigned to,

and an interaction with the presenter. For example, if there are 10 watchers assigned to a presenting agent,

each of the watchers would perform 10 interactions, one with each of the other nine watchers, and one with

the presenting agent. This interaction step follows the same protocols outlined in Chapter 3 and facilitates

additional information dispersal between agents. Following the interaction step, a new group of presenting

agents is randomly selected and the agents go through the same steps as previously outlined. This process can

run for an additional 100 iterations with the threshold for agreement lowered to 90%; if the 90% threshold

is met at any point the prediction is considered “High Confidence” and the swarming period ends.

When neither of the previous thresholds are met, the decision threshold is further reduced to 75% for

an additional 50 iterations of selection, voting, and interaction. If the 75% threshold is met, the prediction

is considered “Medium Confidence”. However, if the threshold has still not been met, a weighted vote is

taken from all presenters and watchers, and the prediction is “Low Confidence”. The weighting is based on

the agent’s certainty score, with agents more certain in their opinion given more weight than those who

are less certain. The confidence thresholds were initially selected using the breast cancer dataset described

in section 4.2.1, based on experimentation, with the goal of 100% accuracy for the “Very High Confidence”

interval. 100%predictive accuracy for the “VeryHighConfidence” category required agreement fromall pre-

senting agents immediately following the fitness proportionate selection step. For this dataset, when there
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was not immediate agreement from all presenting agents, 100% accuracy was a very unlikely outcome for

the “Very High Confidence” category. The number of iterations for each threshold was selected to balance

classification performance with runtime. A future goal is to automate the selection of threshold values and

number of iterations for each confidence interval, for each dataset and classification constraints. For exam-

ple, some usage scenario may prefer more samples captured in the “Very High Confidence” interval while

allowing for a lower predictive accuracy for that category, i.e. some accuracy lower than 100%.

The confidence categories can be summarized as:

• VeryHighConfidence: All presenting agents agree on a prediction class immediately following fitness

proportionate selection,

• High Confidence: 90% of presenting agents agree on a prediction class within 100 iterations of the

swarming process,

• Medium Confidence: 75% of presenting agents agree on a prediction class after 100–150 additional

iterations of the swarming process,

• Low Confidence: Weighted vote of presenters and watchers if above thresholds are not met.

4.4 Results

4.4.1 SwarmAggregation

Fig. 4.1 shows 5–fold validation results for predicting lymph node metastasis status from the clinical fea-

tures listed in Table 4.1, with the output from theWVMon the left and the bee–inspired swarm aggregation

method on the right. The folds used to test the WVM and the swarm aggregation method were the same,

i.e. they were not re–randomized between tests. The averaged 5–fold results for accuracy, sensitivity, and

specificity can be seen in Fig. 4.2. The swarmingmethod improved average accuracy by 6.2%, the sensitivity

by 10.9%, and the specificity by 2.0% comparedwith theWVMaggregationmethod. Theworst case values

for accuracy, sensitivity, and specificity were improved using the swarmmethod, with a worst-case accuracy

in the WVM of 67% in fold 1 improved to 79.4% using the swarm. The bee-inspired swarm method was

strictly an improvement for both the accuracy and sensitivity statistics. However, the WVM out-performed

the swarm method for specificity in 2 of the 5 folds (folds 2 and 4), despite a 2% average improvement.

TheWVM showed significant variance across each fold, which was reduced using the swarm aggregation

method. Table 4.2 shows the variance across the same five folds shown in Fig. 4.1 for both the WVM and
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Figure 4.1: 5-fold validation results for predicting lymph node metastasis status from the clinical fea-
tures listed in Table 4.1. Weighted Voter Model (left) vs. Swarm Aggregation (right)
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Figure 4.2: Averaged validation results for predicting lymph node metastasis status from the clinical
features listed in Table 4.1. Weighted Voter Model (left) vs. Swarm Aggregation (right). Error bars
represent standard deviation.
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Table 4.2: Swarm Aggregation vs. Weighted Voter Model Variance (σ2)

Method Accuracy (σ2) Sensitivity (σ2) Specificity (σ2)
Swarm 2.30 20.99 0.35
WVM 24.52 74.0 20.68

Table 4.3: Confidence Interval Distribution and Accuracy

Interval n = 483 % of n Accuracy (%)
Very High Confidence 3 0.62 100
High Confidence 154 31.9 93.1
Medium Confidence 224 46.4 82.3
Low Confidence 102 21.1 64.7
Very High + High + Medium 381 78.9 86.8

swarm aggregations methods, with the swarm method showing significantly reduce variance for accuracy,

sensitivity, and specificity measurements.

4.4.2 Confidence Intervals

Four confidence intervals described inSection4.2.2were computed for the clinical patient featuresdataset.

The results shown inTable 4.3 represent the fold–averaged results fromFig. 4.2. The “VeryHighConfidence”

category was only able to capture 0.62% of patients and was not considered very useful for this dataset de-

spite meeting the goal of 100% accuracy for patients in this category. The “High Confidence” category cap-

tured31.9%of patients, with an accuracy of93.1% and the “MediumConfidence” category captured46.4%

of patients with an accuracy of 82.3%. 21.1% of patients fell into the “Low Confidence” category with an

accuracy of 64.7%. Eliminating all “LowConfidence” predictions (21.1% or 102 patients) from the output

yields an accuracy of 86.8%, accounting for 381 of the original 483 patients (78.9%). This demonstrates the

ability to stratify the subjects into confidence categories that improve the overall accuracy of the prediction

for all but the lowest confidence predictions.

Anymulti–agent–based systemwill have variances in outcomes based on the interactions between agents

and between agents and the environment and as the number of agents change [69]. Table 4.4 shows the vari-

ance in the number of agents assigned to each confidence interval, as well as the variance in accuracy for each

interval from five randomized simulations. Unsurprisingly, the variance in accuracy increases as the confi-

dence decreases. Additionally, there is little variance in the number of patients assigned to each confidence

category between simulations, indicating the categories are stable and not dependent on data ordering or

agent initialization and interaction order as occasionally seen in the WVM and UWM aggregation mecha-
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Table 4.4: Confidence Interval Variance (σ2) Across 5 Simulations

Interval n = 483 (σ2) Accuracy (σ2)
Very High Confidence 0.222 0
High Confidence 8.667 0.082
Medium Confidence 2.889 0.376
Low Confidence 4.222 4.602

nisms. There is more variance in the “High Confidence” category than in the other categories, which should

be investigated further with additional data.

4.5 Discussion

In this chapter I show the applicationof a swarm–intelligence–derived aggregationmechanism in amulti–

agent,WoC–Bot architecturewhich improves classification accuracy, specificity, and sensitivity while reduc-

ing the variances associated with large, multi–agent systems by using a random ordering and interactions, as

compared with the WVM aggregation method. Additionally, the honeybee–based aggregation mechanism

allows for prediction stratification across confidence intervals, improving accuracy further for a subset of

samples.

The confidence intervals show clear predictive performance differences, where predictions in higher con-

fidence categories aremore likely to be correct than those in lower confidence categories. However, the ‘Very

High Confidence’ category captured less than 1% of samples, rendering it inconsequential for this dataset.

Future work in this area to automate the confidence category delineation should be investigated, based on

the dataset being analyzed, and dynamically updated as performance is tracked throughout the inference

process. This requires dynamic updating of the iterative swarming process such that agreement threshold

and number of iterations are changed automatically. The “Very High Confidence” category’s predictive per-

formance should not be degraded during this process. The swarm will track predictions made after initial

roulette–wheel selection (therefore not be considered “VeryHighConfidence” under the current rules), but

before the end of the “High Confidence” prediction point (currently 100 iterations) to determine if there

is a new threshold for agreement that can be used, threshold y, after some number of iterations, x, where

the prediction can still be considered “Very High Confidence”. Agent–specific information, the predictive

opinion of very high performing agents, may be useful during this process.
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Chapter 5. Incremental Feature Addition

This chapter presents work and results on incremental feature addition for a classification process by in-

corporatingnew featureswhichwere unknownat the timeof initial training. TheWoC–Bots approach is able

to quickly integrate these new features, as they become available, without the expensive retraining required

in traditional networks. The results presented are based on theHollywood data fromChapter 3, augmented

with additional data about cast, production company, and producers and the patient data from Chapter 4,

augmented with additional cellular morphology features. All additional data is incorporated into the classi-

fication task without retraining existing agents and leads to an improvement in the overall accuracy of the

classification for both datasets.

5.1 Background

Another benefit of the multi–agent approach to classification versus a traditional monolithic neural net-

work is the ease at which new input features can be added to the computation. While ANNs are the current

‘state–of–the–art’ approach to learning and classification problems, they require an expensive retraining op-

erationwhen incorporating additional features that change the number of inputs to the network [48]. Some

convolutional neural networks and recurrent neural networks allow for variable length input, which works

well for image, text–based, and some time–series data, but comes with additional complexity and does not

generalize well to typical binary classification problems[76, 56]. In general, most ANNs cannot expand hor-

izontally, i.e. to include previously unknown feature(s), at the input layer, without retraining the network

[135]. Transfer learning allows a model developed for one task to be used for a different, but related, task

and can allow for an additional intermediate input layer to be included to process an increase or decrease

in the number of input features [115]. However, transfer learning also adds complexity to a network and,

importantly, does not guarantee that an existing model will perform well on the new problem [79]. The

features that were used to train the original model need to be general enough to be predictive for both the

original dataset and the new dataset [130].

While eachWoC–Bot has a fixed number of inputs at creation, a restriction of each agent’s internal MLP

network, the interactive and swarm steps of this approach do not have restrictions on the number of partici-

pating agents. As noted inChapter 3, agents withmissing data simply do not participate. A natural extension
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to the variable number of participating agents is the ability to include newly generated agents representing

new data, a feature that does not require retraining any of the existing agents.

5.2 Incremental Feature Addition

5.2.1 Additional Features: Hollywood Success Prediction

The original features for the Hollywood success classification problem can be found in Table 3.1 and the

additional features from the MovieLens dataset being considered are:

• Cast, top 5 listed

• Crew, top 5 listed

• Production company

• Director

where the cast is typically listed in order of importance (though sometimes order of appearance) and the

crew can consist of writers, designers, photographers, audio engineers, and occasionally marketing person-

nel. Only the primary production company was considered, though typically larger budget movies have

multiple production companies, and only the lead director was considered.

5.2.2 Additional Features: Breast Cancer Node Positive / Negative Prediction

The original features for predicting node–positive or node–negative status in breast cancer patients can

be found in Table 4.1. The additional features considered for testing incremental feature addition are the

following:

• Cellular mean area

• Cellular mean circularity

• Cellular mean eccentricity

• Cellular mean intensity

• Standard area

• Standard circularity



61

• Standard eccentricity

• Standard intensity.

The additional features were derived from whole–slide images of a representative hematoxylin and eosin

(H&E) slide of the primary tumor and ID–matched with the existing patient data presented in Chapter 4.

5.2.3 Design: Feature Addition

When new features become available new agents are generated using a combination of the new features

and the existing features. For example, a newly generated agent working on the breast cancer dataset may

receive “Standard area”, “Cellular mean eccentricity”, “Age”, “pT Max size” and “pT Stage” as features, com-

bining twoof the newly available featureswith three of the existing features. Combining the newand existing

features in the newly generated agents solves two problems; (1) new agents need to know about the features

that the existing agents are trained on, and (2), the existing agents need a way to determine trust_score

and prior_performance metrics for the newly generated agents. Both the social interaction arena and

swarm components of the method rely on social variables built around an agent’s prior performance, trust,

and existing knowledge of features. Chapter 3 describes how these values are used and modified when two

agents interact with one another in detail, but without some estimated values for new agents, neither the

existing agents nor the newly generated agents are able to effectively judge the value of another agent’s pre-

diction when interacting with a newly generated agent. In order to solve this problem, newly generated

agents derive estimated prior_performance and trust_scores values from the existing features they

receive. The estimates come from averaging these values from existing agents that have similar features. The

averaging step does have some shortcomings; agents with similar, but not identical, features may have a very

different predictions based on the features that differ between them. This can lead to inaccurate estimated

values for prior_performance and trust_scores which do not accurately reflect the true values for

the newly generated agent’s prior_performance and trust_scores. However, each new agent has a

shorter interaction and prior performance history comparedwith existing agents, which allows for larger ini-

tialmodifications to thesemetrics during the interaction step, correcting inaccurate estimates quickly during

the interaction phase.
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5.3 Results

The following sections show the predictive performance improvements produced when including addi-

tional features for the Hollywood movie and breast cancer datasets. The goal is to show this method can

incorporate new features as they become available without requiring a costly retraining of the full popula-

tion of agents, and without significant loss of predictive performance compared with a full retraining. This

process requires generating new agents, which increases the total number of participating agents. In both

datasets, results are shown that control for additional predictive performance when including more agents

in the simulation.

5.3.1 Additional Features Results: Hollywood Success or Failure

Fig 5.1 presents the 5–fold average accuracy when predicting the success of Hollywoodmovies using 600

agents in the leftmost column. In order to control for the possibility of a large accuracy improvement pro-

duced by simply increasing the number of agents, results are included for a test using the originalHollywood

data but with an increased number of agents, from 600 to 1,000. Each of the additional agents received fea-

tures in the same method as the existing agents. The second–from–left column shows the accuracy results

from this test, with the accuracy improving from 81.14% to 81.38%, an improvement of 0.24%, indicating

that increasing the number of agents may improve the accuracy minimally. The second–from–right column

shows the accuracy after including the additional cast, crew, production, and director information, an in-

crease to 86.77% using the same number of agents, 1,000. The rightmost column shows the accuracy when

fully retraining all 1,000 agents with all of the features. There is a slight increase in accuracy when fully

retraining the agents compared with incrementally adding agents after including the additional features, in-

creasing 1.04% from 86.77% to 87.81%. However, the substantial accuracy increase came from including

the new features, improving predictive accuracy from 81.14% to 86.77%, an improvement of 5.63%. Using

4x Nvidia GTX 1070GPUs, an AMDThreadripper 1950x CPU, and anM.2 SSD for storage it takes 12min-

utes to generate and train 400 new agents for the Hollywood dataset, and 43 minutes to fully retrain 1,000

agents.

5.3.2 Additional Features Results: CellularMorphology

Figure 5.2 shows the original 5–fold average accuracy of the WoC–Bots method for predicting lymph

nodemetastasis status in breast cancer patients. Testing with this dataset again controlled for the possibility
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Figure 5.1: Cast, Crew, Production Features - Accuracy, averaged over 10 runs. Error bars represent
standard deviation.

ofmore agents increasing the accuracy alone, with the second–from–left column showing the accuracywhen

1,250 agents participated, increased from750, using just theoriginal clinical features. Theaccuracy improved

by 0.13%, to 79.47% from 79.34%, again indicating that increasing the number of agents can improve the

predictive accuracy minimally.

The second–from–right column shows the prediction accuracy after including the cellular morphology

features with the original clinical features. The same number of agents (1,250) as the previous test were used

and additional agents were again generated as outlined in Section 5.2.3. In this case the accuracy increased

3.49% from the original test (left column), and 3.36% as compared with the original clinical features and

same number of agents (1,250), indicating the accuracy increase largely comes from incorporating the new

cellularmorphologydata rather than fromsimply generating additional agents. The rightmost columnshows

the accuracy results after fully retraining the agents with the original clinical features and additional cellular

morphology data, with 1,250 agents trained on all of the available data. This test shows a small increase in

accuracy, 0.12%, compared with the prior method, but requires an expensive retraining of all participating

agents. The timeandcomputation cost of retrainingdependson thenumberof agents andavailablehardware.

Using the same hardware as described above, it takes 2 hours, 25 minutes to generate and train 1,250 new

agents compared with 35 minutes to generate and train 500 new agents, a speedup of 4.1×.
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Figure 5.2: Additional Cellular Morphology Features - Accuracy, averaged over 10 runs. Error bars
represent standard deviation.

5.4 Discussion

This chapter presents an extension to the design presented in Chapter 3, where agents with missing data

do not participate in the interaction and swarming phases, leading to a variable number of participating

agents based on the current sample being classified. Now, as new data with new features becomes avail-

able, this approach can incrementally incorporate the data without retraining existing agents by generating

new agents and injecting them into the interaction and swarming steps of the classification process. While

this requires additional participating agents, the results show the performance improvement comes largely

from the additional data rather than by simply increasing the number of participating agents.

It is currently unclear why there was a larger increase when fully retraining agents for the Hollywood

dataset as compared with the breast cancer dataset. One possibility is the additional features were more cor-

related with the output than in the breast cancer dataset, but this has not been confirmed using PCA. Given

the 3.6× speedup in training time, the runtime advantagewhen incrementally adding agents comparedwith

a full retraining of all agents is substantial. Futurework could consider testing on additional datasets to deter-

mine if there are specific characteristics which allow some features to work better with incremental training

compared with fully retraining all agents.
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Chapter 6. Distributability

This chapter describes how WoC–Bots can be distributed across multiple compute nodes and presents

the runtime improvements that results from parallel processing. This approach has three main phases, (1)

the initial MLP training phase, (2) the social interaction phase, and (3) the swarm aggregation phase. All

three phases have been designed to operate independently, with the work on the swarm aggregation phase

leading to a new mode of operation, called a “meta–swarm”, which allows agents to operate with an initial

belief coming from an external source instead of anMLP network as described inChapter 3. How themeta–

swarm can be used for distributing the swarm phase in described in this chapter, and new uses for themeta–

swarm are described in Chapter 7, which can lead to predictive performance improvements.

6.1 DistributedDesign

Themulti–agentnatureof theWoC–Bots approach,whichhasnoglobal control structure, lends itselfwell

to being distributed across multiple computational nodes using clusters of independent machines. There

are threemain phases of this work to consider when discussing distributability, the per–agent training phase,

where each small MLP network is trained, the social interaction phase, where agents share information in

a virtual interaction environment, and the swarming phase, where agents both interact and vote before a

classification is made.

6.1.1 Phase 1: Training

Thetraining phase relies on a small amount of datawhich can bemade available on a node–by–node basis

or transferred across the network without significant delay. During this phase, each agent is independent

and distribution is straight forward. Agents can be placed on each node randomly, or using an initialization

algorithm similar to the initializationmethod discussed in Chapter 3 to optimally pick a node for each agent

based on computational load or network limitations. The MLP network for each agent is trained locally on

whichever node the agent is initialized on. Given the small size and depth of the MLP networks used, the

training phase should not require powerful hardware. The results presented in this chapter initially distribute

agents to each compute node randomly before training their MLP network.
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Figure 6.1: Representation of the full interaction arena for a single node, 4 nodes, and 16 nodes

6.1.2 Phase 2: Social Interaction

The social interaction phase initializes all participating agents in the interaction arena. The flexible design

of the arena allows each compute node to represent some subdivision of the full arena, e.g. an arena with

4 nodes and 120 possible spaces can be subdivided so each node is responsible for a block of 30 spaces.

An agent moving between each subdivision is moved between nodes. Similar to movement biasing on a

single node, the movement can be modulated to encourage agents to remain on the node on which they

were initialized by imposing a penalty for cross–node movement (requiring a network transfer), or it can

allow for any movement without penalty, or even encourage agents to move between nodes as frequently as

possible to better facilitate information dispersal.

Figure 6.1 shows three possible arena configurations, where the leftmost image represents a single node,

themiddle image represents four nodes, and the rightmost image represents sixteen nodes. The dark outline

represents the bounds of the arena and the lighter internal lines present in the middle and rightmost images

represent boundaries between the nodes. Agents can move between nodes freely during the interaction pe-

riod, which requires network transfers, either explicitly fromonenode to another node, or implicitly through

shared storage. All agent interaction information, and agent internal state are stored in SQLite databases

which are written to disk, rather than stored in memory, at the end of each iteration. This work takes ad-

vantage of a disk–based database (SQLite) and a networked Ceph storage cluster ¹ ² that are connected to

each node to implicitly share data on each node without explicit network transfers. As each agent crosses

the boundary between nodes there is a flush of in–memory internal state to a SQLite table and a per–agent

¹https://www.cs.drexel.edu/Account/public-cci-documentation.html
²https://ceph.io/en/

https://www.cs.drexel.edu/Account/public-cci-documentation.html
 https://ceph.io/en/
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flag is set indicating on which node the agent is now present. At the start of each interaction step, each node

checks a table to determine which agents are active on that node, and to ensure no agents are active on mul-

tiple nodes at the same time. On systems without shared storage between nodes it is possible to explicitly

transfer agents using Java serialization ³, or any other preferred data transfer method.

6.1.3 Phase 3: SwarmAggregation

The third phase of this method is the swarming phase. This phase can require frequent movement of

agents between nodes due to the frequent re–selection process for presenters and watchers while the swarm

is iterating. The selection process randomly selects presenters and then distributes agents to available nodes.

This can reduce the benefit of distributing this phase across multiple compute nodes, due to the additional

run time cost from network transfers.

The swarming phase can work in two distinct modes of operation. The first option requires a simple

command and control node, which is responsible for selecting the presenters and watchers, as described in

Chapter 4, and uniformly distributes the agents to available nodes. Each additional iteration of the swarm-

ing process does, however, require global knowledge and control to redistribute agents to each node. This

method produces results identical to swarming on a single node, but is the slower of the two options due to

frequent network transfers while redistributing the agents to new nodes.

The second option allows localized swarming on each node with aggregation at the end of the swarming

process. Following the interaction phase, the agents can either stay on the node they are already present

on, or agents can be randomly distributed to nodes. There is no additional movement of agents between

nodes throughout the swarming process. In order to accomplish this, a method of representing each node’s

prediction was developed. Initial methods attempted to assign a weight to each node based on multiple

factors, such as confidence category for the node’s prediction, the average prior performance of agents on

the node, the average prior performance of the top 15% of agents on the node, and the average confidence

of all agents on the node and the top 15% of agents on the node. Of thesemethods, assigning a node weight

based on average performance of the top 15% of agents produced the best results, however the accuracy of

this method did not match the the previous option or single–node swarming.

Meta–Swarm Anothermethod to represent each nodewas implemented and tested based on the idea of a

“meta–swarm”. Themeta–swarm replaces theMLPwithin each agent with a prediction from an external (to

³https://docs.oracle.com/javase/8/docs/technotes/guides/serialization/index.html

https://docs.oracle.com/javase/8/docs/technotes/guides/serialization/index.html
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the agent) source. Each source could be another classification method, a direct prediction, or in the case of

distributed operation, the prediction from each nodewithin the distributed compute cluster. This is concep-

tually similar to stacking in ensemble learning, wheremultiple weak learners predictions are used as input to

a ‘meta–learner’ and a regression method is used to combine the predictions from the weak learners [126].

However, in the work presented in this dissertation, each prediction fromWoC–Bots, another classification

method, or a distributed node are encapsulated into agents, replacing the MLP step as originally described

in Chapter 3. While the MLP training step is skipped, the agents encapsulating this prediction still oper-

ate as previously described, interacting socially and working together in a swarm to arrive at an aggregate

prediction.

As with the above options, each node receives a random distribution of agents and the swarming process

happens locally on each node. When the swarming process is complete, each node’s prediction is encapsu-

lated into an agent and these agents aremoved to a single node to interact and swarmbefore a final prediction

ismade. While this does require a single node capable of running the swarming process, themaximumnum-

ber of agents is equal to the number of nodes and each agent is computationally simple. This should not

present computational limitations for any node that is also capable of participating in the swarming process.

The meta–swarm method has shown similar performance to the first, network–intensive option, on two of

the three datasets presented in this chapter.

6.2 Configuration

6.2.1 Airline Passenger SatisfactionData

Distributed operations were tested with three different datasets; (1) the Hollywood dataset described in

Chapter 3, (2) the breast cancer dataset described in Chapter 4, and (3) an airline passenger satisfaction

dataset with a large number of samples, 120,000. Both the Hollywood and breast cancer datasets are small,

with 3,699 and 483 samples, respectively. The airline satisfaction dataset allowed verification that agents are

not over–fitting on specific input and provided a much larger test for distributed operation.

The airline satisfaction dataset has 22 input features, seen in Table 6.1. Passengers reported being either

satisfied, neutral, or not satisfied. We considered neutral passengers to be dissatisfied for binary classification

purposes. This more evenly split the dataset (48% satisfied and 52% not satisfied) compared with consid-

ering neutral passengers as satisfied. Not applicable features were represented with a value of 0 (zero). For

example, “In-Flight WiFi satisfaction” was ranked on a 1–5 scale, with a value of 5 being very satisfied, and
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Table 6.1: Airline features available for classification

Features Description
Gender Passenger gender: male, female, other

Customer type Loyal or disloyal
Age Customer age

Type of travel Personal or business
Seat class First, business, eco+, eco

Flight distance Distance of journey
In-flight WiFi satisfaction 0 (N/A) 1-5
Flight time convenience Satisfied with departure / arrival time
Ease of online booking 0 (N/A) 1-5

Gate location satisfaction 1-5
Food / drink satisfaction 1-5

Online boarding satisfaction 0 (N/A) 1-5
Seat comfort 1-5

In-flight entertainment 0 (N/A) 1-5
On-board service satisfaction 0 (N/A) 1-5

Leg room satisfaction 0 (N/A) 1-5
Baggage handling satisfaction 0 (N/A) 1-5
Check-in service satisfaction 1-5

Cleanliness 1-5
Departure delay in minutes
Arrival delay in minutes

a value of 1 being very unsatisfied; a value of 0 (zero) for “In-Flight WiFi satisfaction” indicates this feature

was not present on the airplane, and not an applicable feature for classification for that customer.

6.2.2 DistributedDesign

The following timing results are presented using virtual machines (VM) with the following hardware:

• CPU: AMD Opteron 6376 (Released Nov. 2012); 4 vCPU cores per VM

• RAM: 12 GB DDR3 per VM

• Ceph–base network storage

All virtual machines were configured with identical virtualized hardware, though with no control over

how the physical hardware was divided by the virtualization software. For example, when running with

four virtualized nodes, those four nodes could be powered by a single hardware CPU, or with each node on

a dedicated hardware CPU, or some other possible combination with no user–facing way to determine the

division of resources. 12GBofRAMwas enough to allow all agents tomaintain themselves inmemorywith-

out swapping memory to disk during both the training and interaction phases for the previously discussed

datasets. Agents were distributed uniformly across each available node. An important note, the single–node
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Figure 6.2: Interaction time (ms) for 1,250 agents on 1, 4, 9, and 16 nodes, using data from Chapter
4 with cellular morphology features, averaged over 25 runs. Error bars represent standard deviation.

interaction runtime is not representative of modern hardware, with the interaction step taking an average of

19ms for 1,250 agents and 96ms for 5,000 agents using a AMDThreadripper 1950xCPU and 64GB ofRAM

when testing the breast cancer dataset.

6.3 Distributed Processing

WoC–Bots, and the meta–swarm (depending on the number of inputs) both can have a large number of

participating agents with many decisions influenced by a random number generator (which way to move,

which node to be distributed to, etc.). Additionally, large multi–agent systems will have variances in their

outcomes based on agent–to–agent interactions and agents interacting within their environment [69]. The

results presented in this section are generated by the same seed to the main random number generator used

by the system to guarantee that each run produces the same ordering of interactions and to hold predictive

results consistent across multiple runs.

6.3.1 Runtime Performance

Figure 6.2 shows interaction run times (phases 1 & 2 only) for 1,250 agents on multiple node configu-

rations. Runtime initially increases when using both 2 and 4 nodes, with testing showing this is largely due

to network transfer penalties associated with frequent writes to the networked storage, as agents traverse
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Figure 6.3: Interaction time (ms) for 5,000 agents on 1, 4, 9, and 16 nodes, using data from Chapter
4 with cellular morphology features, averaged over 25 runs. Error bars represent standard deviation.

nodes. However, 9 nodes out–perform a single node with continued runtime improvements when moving

to 16 nodes. Figure 6.3 shows the same node configuration but with 5,000 agents participating. There is an

increase in overall runtime, with runtime analysis indicating that CPU–bound tasks are the primary cause.

The network transfer time takes a similar amount of absolute time in both the 1,250 and 5,000 agent configu-

rations, indicating there is some initial time penalty. However, we do see a decrease in runtimemoving from

1 node to 2 nodes, with further decreases in runtime as more nodes are included. Without additional hard-

ware it is difficult to determine how many additional nodes will continue to improve runtime performance.

6.3.2 SwarmPerformance - Timing and Accuracy

Figure 6.4 shows the average time all three phases takewhen allowing agents tomove freely between avail-

able nodes. Using this method, the swarming phase operates exactly as it would when a single node is used,

however it is distributed across multiple nodes, with agents frequently moving between nodes. Runtime

initially decreases with 2 nodes, dropping from 9,128ms to 6,788ms, and continues to drop to 5,421ms with

4 nodes and 4,918ms with 9 nodes. However, runtime increases with 16 nodes, to 5,301ms. The swarm-

ing phase is not compute–intensive, but when free movement is allowed between nodes it is very network

transfer–intensive, which is demonstrated with the increase in runtime when moving from 9 nodes to 16
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4 with cellular morphology features, with agents moving freely between nodes, averaged over 25 runs.
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nodes.

Figure 6.5 shows the average runtime for the swarm phase when disallowing agent movement between

nodes. Agentsmust remain on the node onwhich they are initialized, all swarming processes happen locally

on each node, with each node represented in ameta–swarm phase once localized swarming is complete. Us-

ing thismethod, the runtime continues to decreasewith additional nodes, indicating the increase in runtime

using the previous method was from network transfers between nodes.

Figure 6.6 shows the prediction accuracy using both of the above methods. In all cases the predictive

performance decreases when swarming is node–local. The accuracy drops minimally in two of the three

examples; dropping from 82.95% to 82.51%, a decrease of 0.44% in the breast cancer dataset and from

95.30% to 94.27%, a decrease of 1.03%, in the airline passenger satisfaction dataset. However, the accuracy

drops substantiallywhenpredictingHollywoodmovie success, from 81.0% to 74.97%, a decrease of 6.03%.

It is currently unclear why this dataset has a larger decrease in predictive performance using the node–local

swarmingmethod, a phenomenon that can be studied in future work using additional datasets thatmay help

isolate the performance issues when operating in the meta–swarm mode for the swarm aggregation phase.
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6.3.3 Conclusion

This chapter shows how the three phases of this classification approach can be distributed acrossmultiple

compute nodes, showing howWoC–Bots can operatewithout a powerfulmachine to train a deep neural net-

work. I demonstrated improved runtime performance when adding compute nodes for both the interaction

and swarm steps. Importantly, themeta–swarmmethod developed to represent the prediction of each of the

nodes has greatly reduced the runtime of the distributed swarm phase by allowing each agent to stay on a

single node throughout the classification process. Thismethod has shown similar accuracy to a single–node

swarm in two of the three datasets tested.
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Chapter 7. ClassificationMethodComparison&Application

7.1 Introduction

This chapter presents detailed comparisons between theWoC–Bots andmeta-swarmmethods described

throughout this dissertation with existing “state–of–the–art” deep learning and ensemble learning classifica-

tionmethods. All experimental comparisons have been completed using theHollywooddata, first described

in Chapter 3, the breast cancer patient data described in Chapter 4, and the airline passenger satisfaction

dataset described in Chapter 6. All of the methods are tested by making binary predictions, and WoC–Bots

are configured as described in Chapter 3, using the honeybee swarm aggregation mechanism described in

Chapter 4.

The following classificationmethods have been selected for comparison based on their “state–of–the–art”

status and commonuse in binary classification tasks [134] and can generally be divided into three categories:

(1) deep learning, (2) ensemble learning, and (3) statistical modeling.

For category (1), a deep neural network was developed in DeepLearning4J, with a new network devel-

oped for each of the three tested datasets. Each network was developed with a suitable number of input

nodes to represent the available features, and between three and seven hidden layers; the specific number of

layers which produced optimal predictive performance for each dataset was used, and all hidden layers are

fully connected.

For category (2), three ensemble methods were considered, random forest, AdaBoost, and XGBoost. In

ensemble learning, multiple weak learners are combined to achieve better predictive performance or better

efficiency comparedwith a single strong learning, like a deepneural network [96]. Random forest first builds

numerous simple decision trees during training and, during inference, identifies the class which is predicted

by the most individual decision trees [19]. AdaBoost is based in boosting in ensemble learning where each

of the individual learners are trained sequentially and each subsequent learner should better represent the

correct prediction. When a previous learnermakes an incorrect prediction, the input data is weighted differ-

ently for a subsequent learning, giving a higher likelihoodof a correct prediction from the subsequent learner

[133]. In AdaBoost, each of the learners are assigned a weight based on their error rate during training, giv-

ing more “votes” to learners with less error, and the predictive class with the greatest total weight from all
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learners will be the selected class for prediction [100]. XGBoost, like AdaBoost, is based in boosting but

adds a regularization step to improve performance when over–fitting on input data is likely [23].

For category (3), logistic regression [30] was selected to compare performance with a pure statistical

probability model which, while more efficient, would not be expected to have the same predictive perfor-

mance of the other methods under consideration.

WoC–Bots have also been tested on sports betting data, making bets from from January 2021 through

November 2022 on college and professional football (NCAA FBS, NFL) and basketball (NCAA Div. 1,

NBA), professional hockey (NHL), baseball (MLB), and soccer (multiple leagues). The approach was

tested primarily on “spread” and “moneyline” bets. In spread bets, the favorite needs to win by some pre–

defined margin, or the losing team needs to lose by less than some pre–defined margin. In “moneyline”

bets, the team that wins the event also wins the bet. Some testing was done on predicting the total score of

a game, but this was not successful in early attempts and no further investigation was conducted. In total,

roughly 10,500 bets were tested and the value of each bet was typically around 0.5 - 1% of available ‘units’.

For example, if there were 1000 units available, each bet would typically represent 5 to 10 ‘units’.

An additional use of the multi–agent design and aggregation mechanism, a meta–swarm, was developed

to incorporate predictions from other sources. As described in Chapter 6, theMLP belief for each agent can

be replacedwith a belief from a distributed compute node, other classificationmethods, or predictions from

external sources. Included in the comparison and sports betting results are results from the meta–swarm;

in the comparisons with other classification methods, the prediction from each method was encapsulated

as a belief in an agent, and the agents were allowed to interact and swarm before making a final prediction.

In the sports betting testing, WoC–Bots were used to make predictions about sporting events, and direct

predictions from other sources were also used, being encapsulated into agents before allowing all of the

agents to interact and swarm to arrive at a final prediction about some event.

7.2 Datasets

The datasets used in this chapter have been described previously in detail. Details for the Hollywood

data can be found in Chapter 3, with specific features seen in Table 3.1. Details for the breast cancer data

are available in Chapter 4, specifically using the clinical features from Table 4.1. Neither the additional cast,

crew, production data from the Hollywood dataset nor the additional clinical patient features presented in

Chapter 5were used for the comparisons in this chapter due to the amount ofmissing data for those features;
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the methods used for comparison throughout this chapter do not easily work with missing features. The

airline passenger satisfaction data used is the same as described in Chapter 6.

7.2.1 Sports BettingData &Background Information

Thesports bettingdatawasused todemonstrate theflexibility of the agent–baseddesign,making an initial

classificationpredictionusingdata asdescribed in this chapter, then also including external, independentpre-

diction sources for spread and moneyline bets. WoC–Bots initially make a prediction about some sporting

event based on the available data, then additional agents are generated using the external prediction as a re-

placement for theMLP network belief. Agents with the external prediction, as well as a representative agent

for the WoC–Bots prediction, begin a meta–swarm phase, sharing and aggregating all of the available infor-

mation before a final prediction is made. The sports betting results initially operated in a WoC–Bots–only

state before switchingover to using themeta–swarm for all subsequent predictions. The switchhappened for

two reasons; one, themeta–swarmwas not developedwhenWoC–Bots were first testedwith sports betting,

and two, the meta–swarm produced a higher return on investment as compared with WoC-Bots alone.

This approach was tested on sports betting data from January 2021 through November 2022 on college

football, National Collegiate Athletic Association (NCAA) Football Bowl Subdivision (FBS), professional

football, National Football League (NFL), college basketball (NCAA Division 1), professional basketball,

National Basketball Association (NBA), professional hockey,NationalHockeyLeague (NHL), professional

baseball, Major League Baseball (MLB), and professional soccer, multiple European, South American, and

Asian-Pacific leagues as well as Major League Soccer (MLS). As noted, the method was primarily tested on

spread and moneyline bets. In spread betting, each team is given a point spread; for example, in basketball,

the favorite may be given the spread “-6.5” and the underdog would then be given “+6.5”. In spread betting,

you are betting on the favorite winning by more than 6.5 points, or the underdog losing by less than 6.5

points. Selecting the favorite at a “-6.5” spread line for a bet means the bet wins when the favorite wins by 7

or more points, but your bet loses even if the favorite wins, but wins by less than 6.5 points. Similarly, when

selecting the underdog to lose by less than 6.5 points, a spread line of “+6.5”, means your bet wins if the

underdog wins the match, or loses by less than 6.5 points. Moneyline bets are more straightforward, with

the team who wins the match also winning the bet. If you bet on team a, and team a wins, the bet also wins.

If team a loses then the moneyline bet loses. Soccer has more than two outcomes in typical betting; win,

loss, or draw. In this case, using moneyline bets, if you select team a to win and team a loses or draws, the
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bet is lost. Moneyline betting is a more common bet type for lower scoring sports like baseball, hockey, and

soccer. Moneyline bets are also common in basketball and football when teams are evenly matched and the

spread would be very small, less than 2.5–3.5 points.

Each bet will have some assigned “odds” from a sportsbook. Odds from different sportsbooks are typ-

ically similar, though deviations of 5% are not uncommon. Throughout this work, the best available odds

were used from United States–based sportsbooks. Spread bets and total points bets are typically designed

so the odds are as close to even as possible. This encourages bets on both sides of the line; that is, trying

to balance the number of bets picking the favorite and the underdog. The odds for these types of bets are

typically between “-105” and “-115”, meaning to receive 100 units back (on top of the original bet amount)

from a winning bet you would need to wager 105 units or 115 units, respectively. Truly even odds would

indicate a line of “+/- 100”, but the sportsbooks earn between 5 - 10% of each wager, so a line of “-110” is

considered “even odds”.

Moneyline bets will stray further from the even line, while still trying to balance the number of bets on

each side of the line. Encouraging moneyline bets on an underdog, which is less likely to win, requires in-

centivizing wagers on that team. Sportsbooks do this by offering more money back than wagered should

the bet on the underdog win. Favorites will have negative odds, “-150”, for example, while underdogs will

have positive odds, “+150”, for example. While a negative line shows you how many units must be wagered

to receive 100 units in return (in addition to the original bet amount) for a winning bet, positive odds show

how many units are returned when 100 units are wagered. For example, a line of “+300” would return 300

units if 100 units were wagered and the bet won, plus the original 100 units, for a total of 400 units returned.

Betting on underdogs, with positive odds, means you can win a lower percentage of bets wagered while still

increasing the amount of units earned.

Theodds assigned toeachevent canbeused todeterminewhat the sportsbook thinks about the likelihood

of some outcome, the implied probability. Even odds indicate a 50/50 chance of an outcome, while +200

odds indicate an implied probability of 33.3% the underdogwins thematch-up. The formulas for calculating

implied probability, probabilityimplied, from the odds can be seen in Eq. 7.1 for negative, or favorite, odds, and

Eq. 7.2 for positive, or underdog, odds.

probabilityimplied = |oddsfavorite|/(|oddsfavorite|+ 100) ∗ 100 (7.1)
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probabilityimplied = 100/(oddsunderdog + 100) ∗ 100 (7.2)

For example, using Eq. 7.1 for a favorite with odds of -300:

300/(300+ 100) ∗ 100 = 75%,

gives an implied probability that the favorite team wins 75% of the time. When selecting bets, the goal is to

maximize the value of the wager. Any time a betting system (WoC–Bots or otherwise) believes the proba-

bility of a team winning the bet is greater than the implied probability, there is value in placing a wager.

Another common type of betting is total betting, that is predicting whether the total points scored in an

event will be higher or lower than some number. For example, a college basketball game may have a “total

line” of 145.5 points. If the combined score of both teams is 146 or higher, then the “over” bet wins, if the

combined score is less than 145.5 then the “under” bet wins. Some testing was done on predicting the total

score of match-ups, but this was not successful for any of the major sports. Professional soccer moneyline

bets were tested with three possible outcomes: win, loss, and draw. However, draw was not considered as a

possible outcome due to limitations in non–binary predictions for this method. In matches where the odds

suggested a high likelihood of draw as an outcome, those matches were not wagered on. For example, team

a: +130, team b: +150, draw: +205 indicate neither team has a large expected advantage and the odds for

a draw are low compared to more typical draw odds (+260–+320). The moneyline bets for all other tested

sports were binary: win or lose. In total, roughly 10,500 bets were tested and the unit size of each bet was

typically around 0.5 - 1% of total ‘units’ available for betting. For example, if there were 1000 units available,

the size of each bet would be 5 to 10 ‘units’. Some spread and total bets can have a line with a whole number

of points, for example ”+6” for a spread bet, or ”145” for a total bet. In cases where the favorite wins by 6

(and underdog loses by 6), or the total score is exactly 145, the bet is considered a push. You neither win nor

lose, it is as if the bet did not happen and any units wagered on the event are returned.

Sports betting data was sourced from numerous independent data sources. The data used includes his-

torical betting odds data for the NHL, NBA, MLB, NFL, and NCAA basketball and football. Historical

odds were also available for the fivemajor European soccer leagues – English Premier League, French Ligue

1, Spanish LaLiga, German Bundesliga, and Italian Serie A. Freely available historical data for the United

StatesMLS soccer league was found to be inaccurate when compared with the officialMLSwebsite and was

not used. Official MLS data has no publicly available API and was not used. Odds data for 2nd and 3rd
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tier European soccer leagues were also found to be inaccurate for certain years and accurate for others after

comparingmultiple freely available data sources. Only yearswith data consistent frommultiple sourceswere

included in the training set.

Play–by–play data was available for the NBA, NFL, and MLB. However, this play–by–play data was only

used to build season–long statistical data for players and teams when that data was otherwise unavailable

through free sources. Some initial testing has shown the granularity of play–by–play data increases the noise,

which thendecreases predictive performance. Roster data, injury information, and game–by–game statistics

were found on ESPN.com ¹, Yahoo! Sports ², and The Action Network ³.

ESPN.com was used to determine upcoming matches. The Action Network publishes odds from major

US–based sportsbook andwas used to determine the best betting odds for upcoming games. For each game,

agents were given information about the competing teams. Statistical information for each team was pulled

from ESPN or Yahoo! Sports, looking at the past 3, 5, and 10 games, as well as season–long trends and

associated statistics. Points scored versus points allowed for NBA teams over the same 3, 5, and 10 games

is an example of statistical information available as input. Roster information for each team was gathered

fromESPN, and statistics for the listed players were populated from both ESPN and Yahoo! Sports. Players’

season statistics, as well as previous 3, 5, and 10 games statistics were included. In some sports, match–up

specific statistics were also available, this included the NBA, NHL, and MLB. MLB statistics also included

pitcher versus expected batting lineups fromYahoo! Sports. The current betting lines were then pulled from

The Action Network and the agents were asked, “will team a win by 5 points” if the spread betting line is

“−5”. Due to the limitations of making binary predictions, the agents will also be asked the same question

on either side of the line until the prediction changes. That is, for the same game, agents would also be asked

“will team a win by 4 points”, “will team a win by 6 points”, “will team a win by 3 points, “will team a win

by 7 points”, and so on until the prediction changed. Both the associated confidence from the swarm step

and the distance from the published line when the opinion changed influenced the overall confidence in

the prediction, with greater distance from the published line giving more confidence in the prediction. For

example, if the agents predict team a does not win by 6 points, there is less confidence in the published−5

betting line than when the agents predict team a will win by 9 points. Spread bets were placed when there

wasmedium tohigh confidence from the swarm, andwhen itwas predicted a teamwould cover the spread by

¹https://www.espn.com/
²https://sports.yahoo.com/
³https://www.actionnetwork.com/

https://www.espn.com/
https://sports.yahoo.com/
https://www.actionnetwork.com/
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at least one point. Moneyline bets were placed whenever there was medium to high confidence of winning.

Predictions from other sources were also gathered and included in the meta–swarm, replacing the MLP

step as described in Chapter 6, Section 6.1.3. Predictions came from ESPN.com (BPI rankings), ESPN.com

(fan rankings), Yahoo! Sports (fan rankings),TheActionNetwork (‘public’ betting, ‘expert’ picks, ‘sharp’ ac-

tion), SportsChatPlace ⁴,CollegeFootballNews ⁵,Winners andWhiners ⁶, FiveThirtyEight ⁷, andSportskeeda

⁸. Some sources have a numerical value associatedwith the predictionwhichwas treated as a confidencemet-

ric. For example, Yahoo! Sports shows the percentage of votes on either side of the spread ormoneyline bets

which is used to represent public sentiment. ESPN.com BPI rankings have a match-up predictor which ag-

gregates internal metrics developed by ESPN and presents a percent chance of winning (moneyline only)

for either team, which can be used to represent confidence in either teamwinning thematch-up. Other web-

sites often, but not always, include a similar metric to represent confidence; when available, the confidence

information was included with each external prediction.

7.3 Results

7.3.1 ClassificationMethodComparison

Thefollowing sections showcomparisonson threedatasetswith theWoC–Botsmethod, themeta–swarm

method and five “state–of–the–art” classificationmethods: AdaBoost, XGBoost, random forest, DeepNeu-

ral Network, and logistic regression.

Breast Cancer Metastasis Figure 7.1 shows the comparison for accuracy, recall, and precision of WoC–

Bots with the other classification methods for a breast cancer dataset, predicting node–positive or node–

negative disease in breast cancer patients. The results presented here were generated using the clinical fea-

tures identified in Table 4.1. The leftmost set of columns show results for the WoC–Bots method, the right-

most set of columns show results for the meta–swarm method. The other sets of columns represent other

classificationmethods, XGBoost, AdaBoost, random forest, DNN, and logistic regression. Themeta–swarm

encapsulates each prediction from the six methods as an agent to be included in the social and swarming

phases of the meta–swarm. Random forest produced the best accuracy at 86.9% and the best precision re-

sults at 84.0%. The DNN implementation produced the best recall at 92.5%. WoC–Bots out–performed

⁴https://scpbetting.com/
⁵https://collegefootballnews.com/
⁶https://winnersandwhiners.com/
⁷https://fivethirtyeight.com/sports/
⁸https://sportskeeda.com/

https://scpbetting.com/
https://collegefootballnews.com/
https://winnersandwhiners.com/
https://fivethirtyeight.com/sports/
https://sportskeeda.com/
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Figure 7.1: Comparison of five classification methods with two versions of the swarm (first and last
columns) for the breast cancer dataset, results averaged over 10 runs of the algorithms. Error bars
represent standard deviation.
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AdaBoost and logistic regression in accuracy and recall, but had the second lowest precision results at 72.0%

(tied with AdaBoost). Themeta–swarm implementation, while not producing the best results for any of the

three metrics, improved consistency between the three metrics, produced the second highest accuracy at

84.8%, and the second highest precision at 82.0%.

Figure 7.2 presents computation times, in milliseconds, needed to perform a single classification for this

dataset using WoC–Bots and other methods. The timing results for all methods were run on the same hard-

ware – AMDThreadripper 1950x CPU, 64GB ofRAM, and 2xNvidia 2070GPUs. WoC–Bots and the deep

neural network were implemented in Java. The other methods were implemented in Python. As expected,

methods which require additional iterative steps take longer to complete, with the WoC–Bots method hav-

ing themost steps, and taking themost time. The timing results here were consistent across multiple runs of

the algorithms using the millisecond time scale.

Hollywood Movie Success Figure 7.3 presents the same information as Figure 7.1 but using the Holly-

wood movie success dataset. A movie was considered successful if the revenue was greater than 2× the

initial budget for the movie. The results presented here use the features listed in Table 3.1 only, not includ-

ing the addition cast, crew, production, and director information. WoC–Bots performed very similarly to a
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Figure 7.3: Comparison of five classification methods with two versions of the swarm (first and last
columns) for the Hollywood movies dataset, results averaged over 10 runs of the algorithms. Error bars
represent standard deviation.
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Table 7.1: Confidence Interval Distribution and Accuracy - Meta-Swarm for Hollywood Success

Interval n = 3699 % of n Accuracy (%)
Very High Confidence 51 1.4 96.1
High Confidence 958 25.9 91.6
Medium Confidence 1261 34.1 84.5
Low Confidence 1428 38.6 77.3
Very High + High + Medium 2271 61.4 87.8

DNN implementation, with 81.1% accuracy compared to 81.3% for the DNN.WoC–Bots out–performed

the DNN with a precision of 84.0% compared with 82.9%, but were out–performed on recall with 79.7%

for WoC–Bots and 80.8% for the DNN. The XGBoost and random forest methods again out–performed

the other classification methods on the accuracy and precision metrics.

The meta–swarm was again tested, out–performing all other methods with an accuracy of 83.7%. Ad-

ditionally, only the XGBoost method had a better recall value at 82.9% compared with the meta–swarm’s

recall of 82.6%. Confidence intervals were tested with this dataset, but applied to the output of the meta–

swarm instead of directly to WoC-Bots. Table 7.1 shows the results of this analysis, with 61.4% of samples

captured in the “VeryHigh”, “High”, and “Medium” confidence intervalswith a combined accuracy of 87.8%.

Additionally, the “Very High” interval was more useful for this dataset as compared with the breast cancer

dataset (Table 4.3), capturing 1.4% of samples (instead of 0.62%), with an accuracy of 96.1%. The “High”

interval captured over 25% of samples with an accuracy of 91.6%.

AirlinePassengerSatisfaction Figure 7.4 presents the sameclassificationsmethods asFigures 7.1 and7.3.

This dataset, however, was far more predictive than the previous datasets, with accuracies over 95% for all

methods except logistic regression. Additionally, all methods were consistent with a slighter higher preci-

sion than accuracy, and a slightly lower recall than accuracy. WoC–Bots performed similarly to XGBoost,

AdaBoost, and random forest, better than logistic regression, and slightly worse than the deep neural net-

work. With most methods already performing well, the meta–swarm did not improve over any of them,

though it did reduce variability between accuracy, precision, and recall. Table 7.2 shows the confidence in-

tervals for the meta–swarm for this dataset. Over 15% of samples fell in the “Very High” interval, over 70%

in the “High” interval with the remaining 15% split almost evenly between “Medium” and “Low” confidence.

The accuracy values for each interval were very similar, with the “VeryHighConfidence” interval being out–

performed by the “High” and “Medium” intervals. The confidence intervals were not found to be useful for

this dataset; the airline data is highly predictive which made it difficult to stratify samples into confidence
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Figure 7.4: Comparison of five classification methods with two versions of the swarm (first and last
columns) for the airline passenger satisfaction dataset, results averaged over 10 runs of the algorithms.
Error bars represent standard deviation.
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Table 7.2: Confidence Interval Distribution and Accuracy - Meta-Swarm for Airline Passenger Satisfac-
tion

Interval n = 129882 % of n Accuracy (%)
Very High Confidence 19797 15.24 95.7
High Confidence 92125 70.93 96.2
Medium Confidence 9109 7.01 95.9
Low Confidence 8851 6.81 95.7
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Figure 7.5: Total units earned over time for all sports tested on, moneyline and spread bets, 2021-01-
1 through 2022-11-15

intervals, a limitation which can be explored in the future.

7.3.2 Sports Betting

The WoC–Bots classification method has been applied to sports betting with some success over a 20–

month period and most major sports. The primary focus has been on spread and moneyline bets, with no

success in predicting the total score in anymajor sports. In total there have been 10,500+ bets wagered with

the value of each bet being between 0.5% and 1.0% of available units. The system started with 150 units

and accumulated over 11,300 units over the 20–month period from January 2021 through November 2022.

As expected in a highly volatile, real world use case, there is variability in the results over shorter periods of

time, but over any 60+ day period of time the results are strictly increasing.
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On October 1st, 2021 the prediction method switched to the meta–swarm mode instead of relying only

on predictions made by WoC–Bots. Other sources of information included in the calculation are described

in Section 7.2.1. At all times, predictions were allowed to be ignored in extraordinary cases, such as late–

breaking injury news or unexpected local events, e.g. city–wide protests in some event location. Less than

3% of predictions were ignored. When predictions were ignored, no action was taken on the event. Other

news and information was assumed to be accounted for in the betting line offered, injury reports, and team

roster information for the event.

Figure 7.5 shows the total units returned by this betting system over this time period. Note that around

June 1st, 2021 the system did briefly go negative. Over this period of the year the only major sports being

played are MLB and soccer, both sports that have proven to be more volatile and more difficult for this

method to predict. Additional volatility was suspected to come from data inconsistencies. All major sports

in the preceding year disallowed fans, had shortened seasons, or were playing condensed seasons to account

for lost time due to the COVID–19 pandemic. This impacted sports and teams differently, with a larger

impact seen in cardio–intensive sports such as soccer, and on teams with older players as compared with the

league average. In all sports, except the NHL, the home field advantage enjoyed prior to the COVID–19

pandemic was reduced.

Tables 7.3 and 7.4 show the total units wagered, units returned beyond the units wagered, the return on

investment (ROI), the total bets, total winning bets, and the win rate for WoC–Bots ( January 1st, 2021

through September 30th, 2021) and the meta–swarm (October 1st, 2021 through November 15th, 2022).

In sports betting the ROI is dictated not just by a win or loss, but also by the odds offered by the sportsbook.

Both WoC–Bots and the meta–swarm have tended to prefer underdog bets, allowing for a lower win rate

while maintaining a positive ROI.

The win rate in both tables can be thought of as the accuracy of the predictions. Notice that the win

rate is below 50% for spread and moneyline bets using both WoC–Bots and the meta–swarm. The default

spread line offered by a sportsbook will be set to -110 odds, but most sportsbooks allow bettors to pick their

own spread line with different odds. For example, a default line could be team-xyz (-5.5) for -110 odds,

meaning that team-xyz needs to win by 6 points or more to win the bet. The sportsbooks will also offer

options such as (-6.5) for +105 odds or (-7.5) for +115 odds. When the prediction has a high associated

confidence value we can take a custom line with positive odds on a spread bet, allowing for a win rate below

50% to still be profitable. This can also be seen for moneyline bets; the win rate for moneyline bets using
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Table 7.3: WoC Bets: Risk, Return and Win Rate (Accuracy) for Spread and Moneyline Bets.

Values Spread Bets Moneyline Bets
Units Risked 8212 18532
Units Returned 628.5 668
ROI 9.5% 3.6%
Total Bets 1161 3282
Winning Bets 572 1481
Win Rate 49.06% 45.12%

Table 7.4: Meta-Swarm: Risk, Return and Win Rate (Accuracy) for Spread and Moneyline Bets.

Values Spread Bets Moneyline Bets
Units Risked 48159 80408
Units Returned 4863.5 5364.5
ROI 10.1% 6.7%
Total Bets 2376 3225
Winning Bets 1174 1296
Win Rate 49.33% 40.19%

themeta–swarm actually drops, from 45.15% usingWoC-Bots only, to 40.19%. However, the ROI increases

from 3.6% using WoC-Bots to 6.7%. This method became better at selecting underdog winners, increasing

the ROI despite the decrease in win rate.

Some testing has been done to improve win rate by biasing the wager selection to prefer favorites. Wa-

gers on favorites, due to the lower payout, were typically placed only when there was an associated high

confidence rating in the prediction. In order to select more wagers on favorites, medium confidence predic-

tions for favorites were also wagered on. This testing improved the win rate but also showed poor overall

results, with negative ROI despite the increase in win rate. The only exception to this is the last 15-20% of

both the NBA and MLB seasons where many teams know their playoff positions and the favorites tend to

win more frequently than during the early and middle parts of the seasons. This is, however, reflected with

worse odds on favorites, which requires a significantly higher win rate to maintain a positive ROI.

Figure 7.6 shows the total units returned for the 2021/2022 NCAA basketball season. The NCAA bas-

ketball season goes through three distinct phases. Each conference has slightly different start dates for each

phase, but all are within a week of each other. The distinct phases are shown on the figure with dividing lines

representing the end of each phase. Phase 1 involves teams playing non–league games against teams they do

not often face. These games are often in a tournament format with less rest between games compared with

phase 2. The method correctly identified that underdogs tend to win these match-ups and the predictions

reflected this. Phase 2, starting around the end of December, involves league play, where teams play other
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Figure 7.6: Total units earned over time for NCAA basketball during the 2021/2022 season.

teams they are familiar with. Thismethod had difficulty with this transition, losing units from lateDecember

through late January before correcting itself before the end of this phase, through February. Phase 3 of the

season involves league championships and “March Madness”, where the best teams compete against each

other. Themethod continued to earn units throughout this time, but with more volatility than other phases.

As more data becomes available the expectation is that volatility will be reduced during these transition pe-

riods. However, college sports in the United States currently allow players to more easily transfer between

universities, which had not been the case in the past, reducing the value of historical training data. There is

not currently enough data to determine if a star player transferring from a smaller teamwill continue to be a

star on a bigger team, or how team dynamics will change after the transfer.

Figures 7.7 and 7.8 show return for NFL wagers over the full 2021-2022 season and the first 2/3rds of

the 2022-2023 season. While the 2022-2023 was on–going at the time of this analysis, the figure is included

to show consistency across multiple years. The NFL is more episodic than other sports, with the majority

of events occurring on Sundays, with single games played on Monday and Thursday, and occasionally on

Saturdays late in the season. This is reflected in the figures with bigger jumps and drops on specific days

instead of amore continuous curve. Performance was similar over both seasons, with a similar ROI for both
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Figure 7.7: Total units earned over time for the NFL during the 2021/2022 season.

spread and moneyline bets.

7.4 Discussion

The WoC–Bots classification approach has demonstrated competitive performance with other state–of–

the–art classification methods for multiple different datasets with a varied number of samples and input

features. While random forest and a deep neural network implementation out–performed WoC–Bots in

maximum accuracy on the tested datasets, WoC–Bots out–performed AdaBoost and logistic regression

methods in two of the three tested datasets and performed similarly to all of the top methods in the third

dataset. WoC–Bots’ accuracy, precision, and recall metrics tracked similarly with the other classification

methods; XGBoost, AdaBoost, random forest, DNN, and WoC–Bots all showed higher recall scores and

lower precision scores on the breast cancer dataset. Similarly, the same methods showed higher precision

and lower recall scores for the Hollywood dataset, indicatingWoC–Bots are learning similar information as

the other classificationmethods. WhileWoC–Bots prediction runtime is the slowest of themethods shown

in this comparison, runtime optimization has not yet been a focus. This is something that can and should be

improved in future work; for example, the interaction arena can be optimized to a series of matrix multipli-

cation operations for each pair of interacting agents. Further, this optimization step would also reduce the
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Figure 7.8: Total units earned over time for the NFL during the 2021/2022 season.

runtime during the swarming phase. The current implementation allows for easy behavioral modification

while testing a new approach, but reducing the inference time is an intended future optimization.

As discussed in Chapter 5, WoC–Bots allow for incrementally expanding the input to the classification

analysis which is useful when the final set of features is unknown or constantly expanding. The real world

results shown with sports betting made use of this feature frequently to incorporate new data from recent

games, as new data sources were discovered or new metrics were developed to track player and team perfor-

mance. Individual WoC–Bots were quickly updated to include results from the most recent games and new

botswere generated to represent novel data sources or statisticalmetrics. An additional use of the distributed

meta–swarm discussed in Chapter 6 is the ability to include external prediction sources into the overall pre-

diction, after the WoC–Bots have made their initial prediction. We have shown this reduces the overall

variance in accuracy, precision, and recall in all of the datasets tested, while also producing the best accuracy

of all methods tested on the Hollywood dataset. WoC–Bots, primarily using the meta–swarm extension,

have been applied to a real world problem, making predictions about the outcomes of sporting events.

From January 1st, 2021 through November 15th, 2022 WoC–Bots and the meta–swarm have produced

positive results acrossmostmajor sports on spread andmoneyline bets. Analysis of the external sources used

in the meta–swarm portion show only FiveThirtyEight to be profitable for soccer and NFL betting over the
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same time period. Some “betting systems” withinTheActionNetwork have shown historic profitability but

are no longer profitable. More recently developed systems require an expensive monthly subscription and

were not investigated, though it is reasonable to expect that at least some of these systems are also profitable

on current sporting events. However, most major sports betting prediction systems, including those from

within the sporting industry (ESPN, Yahoo! Sports), are not profitable, showing WoC–Bots perform quite

well in a very challenging environment.
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Chapter 8. Summary&FutureDirections

I have demonstrated a novel, multi–agent, binary classification method based on Wisdom–of–Crowds,

WoC–Bots, which use a honeybee–derived swarm mechanism for opinion aggregation. This approach is

competitive with other, state–of–the–art, classification methods while demonstrating multiple, significant

advantagesover existing classificationmethods. WoC–Bots aredistributable acrossmultiplehardwarenodes,

can incrementally includenew featureswithout retraining existing agents, and theopinion aggregationmech-

anism is flexible and competent, effectively aggregatingWoC–Bot predictions, and synthesizing predictions

from external sources. External predictions can be incorporated into agents without revealing input data,

or the methods from which the predictions were generated, preserving the privacy of any source data while

allowing for diversity in classification method. WoC–Bots are ideally suited for use in environments where

source data cannot be shared externally, and where multiple institutions are working together on classifi-

cation tasks, using different and unique classifications methods locally. WoC–Bots are, for example, well–

suited for classification tasks using private medical data with patients distributed across multiple different

medical institutions.

Swarm–based decision making has shown remarkable performance in nature and the application of the

honeybee–derivedmechanism used in this work has shown itself to be a competent aggregationmechanism.

This method, additionally, can be used to generate confidence values for each prediction, aiding in decision

making and enabling stratification of samples into different confidence categories, significantly improving

the average accuracy, precision, and recall for a subset of samples, as seen in Chapter 4.

8.1 Chemotaxis–based self–organization

In Chapter 2 I present a chemotaxis–inspired architecture for self–organizing primitives based on virtual

cells which emit chemicals into the environment, detectable by neighboring cells. Primitives start with an

initial random configuration and stochastically follow the explicit, mathematical cumulative concentration

field to reliably formuser–specified shapes using local only interactions. By enforcing a constraint on a single

statisticalmoment when generating the initial swarm of primitives, it is possible to consistently generate spe-

cific shape outcomes, effectively directing global coordination through local only interactions. These types

of systems, with self–directed, local only interactions are robust and adaptable, allowing for simple primi-
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tives to perform complex work in environments where fault tolerance is vital and global control is limited or

impossible.

8.1.1 FutureWork

This work generates initial conditions which bias the primitives locations based on one of four statisti-

cal moments, based on processing and investigating unbiased simulation results. The unbiased simulations

require significant manual sorting and identification of resulting shapes. This can be improved using a com-

puter vision approach to identify and sort resulting shapes. Additional work should investigate if another

method to organize agents prior to the start of the simulation allows for uniformly random agents to move

themselves into biased initial conditions, using chemical concentration fields, before switching to a different

chemical field which directs the agents to robustly form macroscopic shapes.

8.2 WisdomofCrowdBots

Chapter 3 introduces the WoC–Bots architecture and social interaction environment and algorithms.

WoC–Bots are based in theories from Wisdom–of–Crowds, where the opinion of a large and diverse group

will typically be more accurate than any individual opinion within the group. WoC–Bots are small and sim-

ple agents, each initialized with a subset of knowledge learned through training a small and shallow multi–

layer perceptron network. Each agent then joins other agents in a social interaction arena, sharing informa-

tion about their current prediction, what features theywere trained on, and their historical performance data.

The social interaction process allows for global information sharing and prediction formation through local

only interactions.

8.2.1 FutureWork

The existing architecture is modular, allowing for different algorithms to be used for initialization and

movementwithin the interaction arena, different shapes for the arena, and behavioralmodification of agents

such that they are more or less willing to share information during interactions. Existing work uses a simple

and random initialization of agents within the arena; future work should explore predictive performance

when biasing agents to be initialized in specific locations of the arena based on the information each agent

is trained on, or past performance of specific agents. Ensuring that high performing agents are uniformly

distributed within the arena may produce better predictive performance through sharing more accurate in-

formation. Additional work should investigate the movement mechanism and environment shape to deter-
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mine if restricting movement, or clustering agents in specific locations has a positive impact on predictive

performance. Finally, modifying agent behavior may allow for a richer interaction experience which better

models behavior of animals and humans which, often, are not incentivized to provide truthful and helpful

information to their peers.

An existing limitation of this architecture relates to the types of input features. An input feature which

shows no correlation to the outcome unless it is seen with at least one other input feature may not show any

predictive value using this approach. Due to the random feature distribution and random social interaction

it is not possible to guarantee any set of n features will be seen by the same agent. When knowledge exists

about a given feature space it is possible to direct specific features to specific agents, however this is not a

general solution to all problems. Experimentation using bacteria DNA to predict the dosage of antibiotic

required to neutralize the bacteria presented significant difficulty, with results typically no better than the

null model. Specifically, the task was to identify the dosage of antibiotic based on n–mers, or chunks of

DNA codons, sized as 3–mers and 4–mers. No individual n–mer contains enough information to accurately

make a classification. The random distribution of features across agents and random information dispersal

during the agent interaction periodmade it impossible to guarantee specific sets of n–mers would be known

by any specific agent. Without knowing some specific set of n–mers existed in the data it was impossible to

consistently classify the amount of antibiotic necessary to neutralize the bacteria. Future work should inves-

tigate if this problem is solvable using this approach, and how to best initialize the agents to guarantee that all

features are available to agents during the interaction period. This would involvemodifying the initialization

and movement algorithms to guarantee all agents interact at least once without adding significant compute

overhead with random movements during the interaction period.

8.3 Swarm–based opinion aggregation

In Chapter 4 I introduced a swarm–based opinion aggregation mechanism for classifying breast cancer

patients as node–negative or node–positive. Thismechanism,modeled on honeybee foraging behavior, pro-

duces predictions with an associated confidence score, derived from the number of iterations required for

the agents to agree on a prediction. Compared with existing aggregation methods, the swarm–based mech-

anism reduces predictive variance while improving classification performance. In use, this mechanism ran-

domly selects 20% of agents to act as ‘scouts’, presenting their predictions to the remaining 80% of agents.

An iterative swarming process iteratively lowers the decision threshold until a prediction is made with an
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associated confidence score, or a weighted vote is taken from all agents – representing a low–confidence

prediction. This aggregation mechanism significantly out–performed the weighted voter model, while low-

ering predictive variance, and successfully stratifying samples into confidence intervals with clear predictive

performance differences.

8.3.1 FutureWork

The distributed nature of this method causes specific limitations around the type of classification which

is possible, where experimental results have shown predictive performance limitations for non–binary clas-

sification problems. Both multi–class output from the swarm, as well as an iterative approach where the

swarm outputs a binary prediction for each pair of available classes have been investigated. For example, an

iterative approach with three possible output classes will generate a binary prediction between class 1 and

class 2, class 1 and class 3, and class 2 and class 3. If any of the binary predictionsmeets a defined threshold, a

prediction ismade, otherwise the top classes are again compared in a binary fashion. Neither themulti–class

nor the iterative approach have consistently performed well for non–binary classification problems. Future

work should look to address this limitation, possibly by extending the swarmingprocess to better incorporate

the iterative approach where more than two classes can be compared.

8.4 Incremental Feature Addition

Chapter 5 introduced incrementally adding new and previously unknown feature to an existing classifi-

cation task without retraining existing agents. The social interaction and swarming phases of this approach

allow for a variable numberof participating agents, allowing for newly generated agents, representing thenew

input data, to be included in the classification task. New agents are created with amix of new and previously

known features; each agent has its MLP network trained, and is then inserted into subsequent interaction

and swarming steps. This approach has shown it can learn new information from additional features, improv-

ing predictive performance.

8.4.1 FutureWork

Incrementally incorporatingnew featureswas testedon twodifferentdatasets, with theHollywooddataset

showing some predictive performance difference when comparing incrementally including new features

with fully retraining all agents on all of the available features (1.04%). The breast cancer dataset test has

shown minimal predictive performance differences under the same circumstances (0.12%). Future work
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should investigate why the Hollywood dataset showed larger increase when retraining all agents to deter-

mine if there are specific data characteristics which lead to larger performance differences when incremen-

tally updating the input compared with fully retraining all agents.

8.5 DistributedDesign

This classification approach has three distinct phases; (1) initialMLP training, (2) social interaction, and

(3) swarm aggregation. Each of the the three phases has been distributed across multiple hardware nodes,

with runtime decreasing as more nodes are available when a sufficient number of agents are present. Dis-

tributing the swarm initially showed poor performance due to high network transfer overhead and low com-

pute usage. Work on this problem lead to the development of a meta–swarm, where predictions from each

node are encapsulated into an agent, replacing the MLP belief for each agent. Using this method, runtime

for the swarming phase was reduced dramatically while predictive performance remained similar on two of

the three tested datasets.

8.5.1 FutureWork

Future investigation should work towards reducing the network transfer time. This work uses an implicit

transfer mechanism, using shared network storage. It is likely that an explicit approach using more efficient

means, such as data serialization in Java, would lead to a more time–efficient network operation. Additional

work needs to be completed to determine why there was a predictive performance drop for the third dataset,

predictingHollywoodmovie success, when using themeta–swarm approach. Specifically, it should be deter-

mined if there are limitations on the types of input features, the size of the dataset, or the type of prediction

being made where the meta–swarm produces inferior results to that of single–node swarming.

8.6 MethodComparison&Application

Chapter 7 presents detailed comparisons with existing state–of–the–art classification methods encom-

passing deep learning, ensemble learning, and statistic modeling. Testing was conducted using three dif-

ferent datasets, described throughout this dissertation, and results showed comparable performance with

all tested methods, with WoC–Bots out–performing AdaBoost and logistic regression, while being slightly

out–performed by a deep neural network implementation and an ensemble method: random forest.

Also presented was a real world application of this approach, testing predictive performance on sports

betting across major sports, on spread and moneyline wagers. This method was tested over a 20–month
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period, showing a consistent ROI on all sports, starting with 150 units and ending with 11,300 units. The

meta–swarm developed for distributing the swarm phase of the systemwas further extended to incorporate

external predictions into the system prior to the interaction and swarm phases, boosting spread bet ROI

from 9.5% (WoC–Bots only) to 10.1% and moneyline ROI from 3.6% (WoC–Bots only) to 6.7%.

8.6.1 FutureWork

WoC–Bots demonstrated the slowest inference time of the testedmethods; runtime optimization should

become a focus of future optimization. Agents in both the interaction and swarming phases move through-

out a simulated arena. Both environments can be optimized to a series ofmathematicalmatrix operations on

the attributes each agent stores internally. Movementwithin the interaction arena can also be pre–computed,

reducing the time it takes during inference to move agents to new locations, a step which currently happens

sequentially on a single compute thread.

Significantlymorework should be investigated for a sports betting application of this approach. Themost

successful approach has been picking underdog winners, for a lower average win rate but a higher return on

investment. Finding the right balance between win rate and ROI, and biasing the swarm mechanism to

produce appropriate confidence scores to pick the right wagers is an interesting optimization problem I plan

on continuing to investigate. Further investigation should build upon future work in developing a multi–

class prediction system to better take advantage of sports with non–binary outcomes.

8.7 Conclusion

I presented a novel approach to binary classification developed around a modular, multi–agent–based

architecture. This approach allows for classification of samples with incomplete data which demonstrates ro-

bust predictive performance. Thismethod allows for incrementally updating input datawith new, previously

unknown features, without retraining existing agents. Each of the three phases, training, social interaction,

and swarm aggregation, have been effectively distributed across multiple compute nodes, decreasing train-

ing and inference time. Importantly, an additional algorithmwas developed, themeta–swarm, which allows

for predictions from distributed sources to be included in the classification task, without compromising the

privacy of the original input data, while also allowing for flexibility in classification method from each in-

put source. This dissertation demonstrated fundamental contributions to the field of computer science and

successfully demonstrated a real world usage of this method.
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8.8 Publications&Talks

8.8.1 Publications

1. S.Grimes, L.Bai, A.W.E.McDonald, andD.E.Breen, “DirectingChemotaxis-BasedSpatial Self-Organization

via Biased, Random Initial Conditions,” International Journal of Parallel, Emergent and Distributed

Systems, Vol. 34, No. 4, April 2019, pp. 380-399.

2. S. Grimes and D.E. Breen, “Woc-Bots: An Agent-Based Approach to Decision-Making,” Applied Sci-

ences, Vol. 9, No. 21, November 2019, p. 4653.

3. S. Grimes,M.D. Zarella, F.U. Garcia andD.E. Breen, “AnAgent-based Approach to Predicting Lymph

Node Metastasis Status in Breast Cancer,” Proc. IEEE International Conference on Bioinformatics

and Biomedicine, pp. 1315-1319, December 2021.

4. S. Grimes and D.E. Breen, “A Multi–Agent Approach to Binary Classification Using Swarm Intelli-

gence,” Future Internet, Vol 15, No. 1, January 2023, p. 36.

8.8.2 Talks

1. “WoC-bots: AMulti-agent Approach to Predicting LymphNodeMetastasis from Primary Breast Tu-

mors”, presented at Pathology Informatics Summit, May 2021

2. “AnAgent-based Approach to Predicting LymphNodeMetastasis Status in Breast Cancer,” presented

at IEEE International Conference on Bioinformatics and Biomedicine, December 2021
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